Skip to main content
Chemistry LibreTexts

1.5: The Breadth of Organic Chemistry

  • Page ID
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Organic chemistry originally was defined as the chemistry of those substances formed by living matter and, for quite a while, there was a firm belief that it would never be possible to prepare organic compounds in the laboratory outside of a living system. However, after the discovery by Wohler, in 1828, that a supposedly typical organic compound, urea, could be prepared by heating an inorganic salt, ammonium cyanate, this definition gradually lost significance and organic chemistry now is broadly defined as the chemistry of carbon-containing compounds. Nonetheless, the designation "organic" is still very pertinent because the chemistry of organic compounds is also the chemistry of living organisms.

    Each of us and every other living organism is comprised of, and endlessly manufactures, organic compounds. Further, all organisms consume organic compounds as raw materials, except for those plants that use photosynthesis or related processes to synthesize their own from carbon dioxide. To understand every important aspect of this chemistry, be it the details of photosynthesis, digestion, reproduction, muscle action, memory or even the thought process itself, is a primary goal of science and it should be recognized that only through application of organic chemistry will this goal be achieved.

    Modern civilization consumes vast quantities of organic compounds. Coal, petroleum, and natural gas are primary sources of carbon compounds for use in production of energy and as starting materials for the preparation of plastics, synthetic fibers, dyes, agricultural chemicals, pesticides, fertilizers, detergents, rubbers and other elastomers, paints and other surface coatings, medicines and drugs, perfumes and flavors, antioxidants and other preservatives, as well as asphalts, lubricants, and solvents that are derived from petroleum.

    Much has been done and you soon may infer from the breadth of the material that we will cover that most everything worth doing already has been done. However, many unsolved scientific problems remain and others have not even been thought of but, in addition, there are many technical and social problems to which answers are badly needed. Some of these include problems of pollution of the environment, energy sources, overpopulation and food production, insect control, medicine, drug action, and improved utilization of natural resources.

    Contributors and Attributions

    John D. Robert and Marjorie C. Caserio (1977) Basic Principles of Organic Chemistry, second edition. W. A. Benjamin, Inc. , Menlo Park, CA. ISBN 0-8053-8329-8. This content is copyrighted under the following conditions, "You are granted permission for individual, educational, research and non-commercial reproduction, distribution, display and performance of this work in any format."

    This page titled 1.5: The Breadth of Organic Chemistry is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by John D. Roberts and Marjorie C. Caserio.