1.11: Research
- Page ID
- 52298
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)What can be accomplished through team work?
Most jobs to day involve a fair amount of meetings and team involvement. It doesn’t matter what you do, you will spend a certain amount of time meeting with other people, sharing what you have done, planning projects, and organizing the work. Hardly anybody works by him or herself these days – everybody is part of a larger group.
The Nature of Science
Today’s scientists rarely work alone. Rather, most scientists collaborate with one another as part of a group effort, no matter the setting. The majority of research scientists work either for a company such as DuPont Chemical Company in Wilmington, Delaware or for one of many universities, such as the California Institute of Technology. Working as part of a group has many advantages. Most scientific problems are so complex and time-consuming, that one person could not hope to address all of the issues by himself or herself. Instead, different members of a research group are each tasked with a particular small aspect of a larger research problem. Collaboration between members of the group is frequent. This occurs informally in the laboratory on an everyday basis. Research groups typically have regular meetings where one or more members of the group may give a presentation to the others on the status of the research that they are doing. Progress normally occurs in small steps rather than grand, sweeping discoveries, and that progress is helped along by the teamwork that comes from working as part of a group.
Modern scientific research is usually expensive. Lab equipment, chemicals, research space, and the upkeep of technical instrumentation all costs money. So research groups need to raise money in order to continue their research. Much of that money comes from government sources, such as the National Science Foundation or the National Institute of Health, especially in the case of research being done at universities. Private companies can fund their own research, but may also seek outside funding as well. Scientists write grants explaining the goals of their research along with projected costs, and funding agencies make decisions on which research projects they would like to fund. The long-term viability of most research labs depends on the ability to get and maintain funding.
Communicating Results
Suppose that your research is a success. What now? Scientists communicate their results to one another and to the public at large in several ways. One is to publish their research findings in one of many publications called scientific journals. There are many hundreds of scientific journals covering every field of science imaginable. In chemistry, there is the “Journal of the American Chemical Society,” the “Journal of Physical Chemistry,” and the “Inorganic Chemistry,” to name just a few. Some journals have a very narrow scope while others publish articles from many different sciences and appeal to a wider audience. Examples of the latter include the journals “Science” and “Nature.” Journal articles are often very complex and detailed. They must be accurate, since the research field as a whole uses these journal articles as a way to make scientific progress. Therefore, journal articles are only published after having been extensively reviewed by other professional scientists in the same field. Reviewers have the power to make suggestions about the research or possibly question the validity of the author’s conclusions. Only when the reviewers are satisfied that the research is correct, will the journal publish the article. In this way, all scientists can trust the research findings that they read about in journals.
Scientists also communicate with one another by presenting their findings at international conferences. Some scientists are chosen to give a lecture at a conference, typically about research that has already been published. Many other scientists at the same conference will present their work at poster sessions. These poster sessions are more informal and may often represent research that is still in progress.
A Shot in the Dark: Alternative Uses for Squid Ink
Squid ink is commonly thought of as a defensive mechanism used by squids, but could there be other uses? In this video by Science Friday, Dr. Stephanie Bush talks about possible other functions of squid ink.
Snowflake Safari
Next snowstorm, grab a magnifying glass and look carefully at snowflakes. Bullet rosettes, stellar plates and capped columns are just a few of the many varieties of snow crystals. In this video by Science Friday, physicist Kenneth Libbrecht shares secrets about snowflakes.
Summary
- Scientific research today is a team effort.
- Support for research usually comes from grants.
- Findings are shared in meetings, conferences, and scientific publications.
Review
- How is most scientific research carried out today?
- How is research usually supported?
- How do scientists share their findings?