Skip to main content
Chemistry LibreTexts

7.3: Malleability of Metals and Alloys

  • Page ID
    183334
  • Metals with close-packed structures (HCP and FCC) such as copper, gold, silver, zinc, magnesium, etc. are in general more malleable than those with the BCC structure (tungsten, vanadium, chromium, etc.). Why? In the close-packed structure, there is relatively little corrugation between sheets of metal atoms. This means that these planes can slip past each other relatively easily. In the BCC structure, there are no close-packed planes, and much greater corrugation between atoms at different levels. This makes it much harder for one row to slide past another.

    clipboard_e0a4e4f4ee253cc914a81c3459940e289.png

    This effect explains the hardness of alloys like brass (CuZn, which has the BCC structure), which are made by combining two soft metals (Cu and Zn, which are respectively FCC and HCP as pure metals, are both soft and ductile). Bronzes - originally made as alloys of copper and arsenic, but later as alloys of copper and tin - are harder than either of the constituent metals for the same reason.

    clipboard_eff91e495b8e51c4f6ef462a83b19e34a.png

    The history of bronzes and brass dates to pre-historic times, with the earliest brasses made by smelting copper-zinc ores. In the Bronze Age, possession of these hard alloys provided a tactical advantage in warfare (see image at right), that was later supplanted when the technology for smelting iron was developed.

    clipboard_e56b1773007c20128c86666ee533f85b7.png

    Bronze age weapons from Romania.