Skip to main content
Chemistry LibreTexts

5.3: HMBC and HMQC Spectra

  • Page ID
    189777
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Just as COSY spectra show which protons are coupled to each other, HMBC (and the related HMQC) give information about the relative relationships between protons and carbons in a structure. In an HMQC spectrum, a 13C spectrum is displayed on one axis and a 1H spectrum is displayed on the other axis. Cross-peaks show which proton is attached to which carbon. COSY spectra show 3-bond coupling (from H-C-C-H), whereas HMQC shows a 1-bond coupling (just C-H).

    Take a look at n-hexylbenzene. There are lots of similar positions in this structure, so it may be hard to tell peaks apart in either the proton or carbon NMR spectrum.

    clipboard_ebb28d1beef281296f806a6bfba3383ed.png

    Indeed, the 1H spectrum has some unique peaks but also a couple of large multiplets.

    clipboard_e5d41561afd1402344fc45a95d94f3ecd.png

    Similarly, there are a couple of carbons that show up at the same place in the 13C NMR spectrum.

    clipboard_e707b28fc79373849bedb47caad473c55.png

    An HMQC experiment will help spread things out into two dimensions. Looking along the x axis, we can see that several peaks were clustered together near 7 ppm and near 1.3 ppm. Even looking along the y axis, we can see a couple of carbon peaks have separated out from each other around 33 ppm.

    clipboard_e9764847e42db5c5ebba61bb3df975746.png

    An HMBC spectrum looks very similar to an HMQC spectrum, except that it shows 2-bond, 3-bond or sometimes even 4-bond coupling (not H-C, but H-C-C or H-C-C-C or even H-C-C-C-C). Instead of seeing which carbon is directly attached to a hydrogen, we see which carbon is next to that one, so that we begin to see how the molecule connects.

    Exercise \(\PageIndex{1}\)

    Analyse the data to determine which of the two isomers (below) we are dealing with.

    clipboard_ede4ad3ed3f53d7792b0f338d32defc4d.png

    clipboard_eeb66af116147a06cb7313d2669e5c598.png

    clipboard_e0e8a97e46c5daace709800872fbd1b98.png

    Answer

    clipboard_e79fa11dcffa2c55970907873efe1490c.png

    clipboard_e9a3d68a590edfadf68a488773ab625f0.png

    Exercise \(\PageIndex{2}\)

    Analyze the data to determine which of the two isomers (below) we are dealing with.

    clipboard_e055d9a6b2e97b3197aa6b7b2e40f5db3.png

    clipboard_e4168c0e4f46846a840a10114b46f533d.png

    clipboard_e6ea4f08e98310ec27de5ec13a59a7c5d.png

    Answer

    clipboard_ed2167ce2fd4aea3b41e8562dc586dfd5.png

    Exercise \(\PageIndex{3}\)

    Analyse the data to determine the structure of the compound.

    clipboard_eff12eaa9a014ddc33ffb83c15007c84e.png

    clipboard_ea0cfa7426b726cdee043f667a72719c8.png

    clipboard_ecb366ae45e670009161ba7539393e3c6.png

    Answer

    clipboard_e4ab16a94d63a6a7a66683336ede0bcbc.png

    Exercise \(\PageIndex{4}\)

    clipboard_ecce1daa288baaec5ffb7ac0354b43902.png

    clipboard_ebd04c5d1d2b3ab259e4436592c6d6ca1.png

    clipboard_e8c17e39be6a9d82366a99b017199df54.png

    clipboard_e753ade191ce9cd7e454c38543f493318.png

    Answer

    clipboard_ebfe4df4eb6bcb9b6e8b97c407575a0c5.png

    Exercise \(\PageIndex{5}\)

    clipboard_e59a96328b9038236bb08092453006e03.png

    clipboard_ea66827ff578d3d9267e424e38726173c.png

    Answer

    clipboard_ec7429761ebe51660bfd28c935a19e0c5.png

    Exercise \(\PageIndex{6}\)

    clipboard_e4fee03b836aec5aa838115166a5bde57.png

    clipboard_e3b08e07b8f819b81d23172bcd261073c.png

    clipboard_e890fb5d7459e458e0ef491406f060ba6.png

    Answer

    clipboard_e983813900870425b62351af85842affd.png

    Exercise \(\PageIndex{7}\)

    clipboard_ecea560d371bb73aecdfbcfa368a2c7a9.png

    clipboard_e81c8ccb0e4c0954a01eb3fa9d2f98fd0.png

    clipboard_e61c75c0bef27aeaf0f85734ee72627e4.png

    Answer

    clipboard_e6a3a6762ea975520602039c70a28feeb.png

    Exercise \(\PageIndex{8}\)

    clipboard_e124bf059d302c310bee0dfb62e262982.png

    clipboard_ed511f765c7bf4b4c76c65eca253228a4.png

    clipboard_ec4972002daa323fcc456267f8bf949ae.png

    clipboard_eebea02d28d1ce82ec031bebf4e0b9a61.png

    Answer

    clipboard_ec90f22dbec0a4036733e2afa70748526.png

    *Sources:

    Selected IR spectra from SDBS (National Institute of Advanced Industrial Science and Technology, Japan, Spectral Database for Organic Compounds, http://sdbs.db.aist.go.jp/sdbs/cgi-bin/cre_index.cgi, accessed December, 2015).

    1H NMR, 13C NMR, HMBC and HMQC spectra simulated.


    This page titled 5.3: HMBC and HMQC Spectra is shared under a CC BY-NC 3.0 license and was authored, remixed, and/or curated by Chris Schaller via source content that was edited to the style and standards of the LibreTexts platform.

    • Was this article helpful?