Skip to main content
Chemistry LibreTexts

15.1: Dimensionality Reduction

  • Page ID
    294338
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    One approach that does not require energy input works by recognizing that displacement is faster in systems with reduced dimensionality. Let’s think about the time it takes to diffusively encounter a small fixed target in a large volume, and how this depends on the dimensionality of the search. We will look at the mean first passage time to find a small target with radius b centered in a spherical volume with radius R, where R≫b. If the molecules are initially uniformly distributed within the volume the average time it takes for them to encounter the target (i.e., MFPT) is1

    clipboard_e2e148441c367644d9d84ab6057b3291a.png\( \begin{aligned} &\langle \tau_{3D} \rangle \simeq \dfrac{R^2}{3D_3} \left( \dfrac{R}{b} \right) \qquad \qquad R \gg b \\ &\langle \tau_{2D} \rangle \simeq \dfrac{R^2}{2D_2} \ln \left( \dfrac{R}{b} \right) \qquad \: \: \: \: \: \: R \gg b \\ &\langle \tau_{1D} \rangle \simeq \dfrac{R^2}{3D_1} \end{aligned} \)

    Here Dn is the diffusion constants in n dimensions (cm2/sec). If we assume that the magnitude of D does not vary much with n, the leading terms in these expressions are about equal, and the big differences are in the last factor

    \( \left( \dfrac{R}{b} \right) > \ln \left( \dfrac{R}{b} \right) \gg 1 \)

    \( \langle \tau_{3D} \rangle > \langle \tau_{2D} \rangle \gg \langle \tau_{1D} \rangle\)

    Based on the volume that needs searching, there can be a tremendous advantage to lowering the dimensionality.

    _______________________________________________

    1. O. G. Berg and P. H. von Hippel, Diffusion-controlled macromolecular interactions, Annu. Rev. Biophys. Biophys. Chem. 14, 131-158 (1985); H. C. Berg and E. M. Purcell, Physics of chemoreception, Biophys. J. 20, 193-219 (1977).

    This page titled 15.1: Dimensionality Reduction is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.

    • Was this article helpful?