Skip to main content
Chemistry LibreTexts

13.2: Brownian Dynamics

  • Page ID
    294331
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    The Langevin equation for the motion of a Brownian particle can be modified to account for an additional external force, in addition to the drag force and random force. From Newton’s Second Law:

    \[ m \ddot{x} = f_d + f_r(t)+ f_{ext}(t) \nonumber \]

    where the added force is obtained from the gradient of the potential it experiences:

    \[ f_{ext} = -\dfrac{\partial U}{\partial x} \]

    With the fluctuation-dissipation relation \( \langle f_r(t)f_r(t')\rangle = 2\zeta k_BT \delta (t-t')\), the Langevin equation becomes

    \[ m\ddot{x} + (\partial U/\partial x)+\zeta \dot{x} - \sqrt{2\zeta k_BT } R(t)=0 \]

    Here \(R(t)\) refers to a Gaussian distributed sequence of random numbers with \(⟨R(t)⟩ = 0\) and \(⟨R(t) R(t′)⟩ = δ(t ‒ t′)\).

    Brownian dynamics simulations are performed using this equation of motion in the diffusion-dominated, or strong friction limit \( |m\ddot{x}|\ll |\zeta \dot{x}|\). Then, we can neglect inertial motion, and set the acceleration of the particle to zero to obtain an expression for the velocity of the particle

    \[\dot{x} (t) = \dfrac{\dfrac{\partial U}{\partial x}}{\zeta} -\sqrt{2k_BT/\zeta} R(t) \nonumber \]

    We then integrate this equation of motion in the presence of random perturbations to determine the dynamics \(x(t)\).

    Readings

    1. R. Zwanzig, Nonequilibrium Statistical Mechanics. (Oxford University Press, New York, 2001).
    2. B. J. Berne and R. Pecora, Dynamic Light Scattering: With Applications to Chemistry, Biology, and Physics. (Wiley, New York, 1976).

    This page titled 13.2: Brownian Dynamics is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.