Skip to main content
Chemistry LibreTexts

4.1: Detection of chemiluminescence

  • Page ID
    76116
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The detector of choice for chemiluminescence is the photomultiplier tube, a development of the vacuum phototube that permits considerable amplification of the signal. Figure D1.1 shows how the photomultiplier works. The surface of the cathode supports a photoemissive layer that ejects electrons in direct proportion to the intensity of the incident light; several electrons are emitted for each photon and are attracted towards a positively-charged dynode. When the electron beam meets the dynode several electrons (E in figure D1.1) are ejected for each incident electron and these are attracted to a second dynode at a higher positive potential. This process is repeated along a series of dynodes, the intensity of the electron beam increasing continually until when it reaches the anode (at the greatest positive potential) there are over a million electrons for each photon incident at the cathode. The resulting current can be amplified electronically. In the absence of light, the photomultiplier generates a dark current, chiefly due to thermal emission. Thermal dark currents can be eliminated by cooling to ─30°C.


    500px-Photomultiplier-1.jpg


    Principle of the photomultiplier (see text).

    Diodes are also used for chemiluminescence detection[1], especially in low-cost applications. Photographic detection was also used in very early work[2].


    4.1: Detection of chemiluminescence is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?