35.4: Critical Values for F-Test
- Page ID
- 363087
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The following tables provide values for \(F(0.05, \nu_\text{num}, \nu_\text{denom})\) for one-tailed and for two-tailed F-tests. To use these tables, we first decide whether the situation calls for a one-tailed or a two-tailed analysis and calculate Fexp
\[F_\text{exp} = \frac {s_A^2} {s_B^2} \nonumber \]
where \(S_A^2\) is greater than \(s_B^2\). Next, we compare Fexp to \(F(0.05, \nu_\text{num}, \nu_\text{denom})\) and reject the null hypothesis if \(F_\text{exp} > F(0.05, \nu_\text{num}, \nu_\text{denom})\). You may replace s with \(\sigma\) if you know the population’s standard deviation.
\(\frac {\nu_\text{num}\ce{->} }{\nu_{denom} \ce{ v }}\) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 | \(\infty\) |
1 | 161.4 | 199.5 | 215.7 | 224.6 | 230.2 | 234.0 | 236.8 | 238.9 | 240.5 | 241.9 | 245.9 | 248.0 | 254.3 |
2 | 18.51 | 19.00 | 19.16 | 19.25 | 19.30 | 19.33 | 19.35 | 19.37 | 19.38 | 19.40 | 19.43 | 19.45 | 19.50 |
3 | 10.13 | 9.552 | 9.277 | 9.117 | 9.013 | 8.941 | 8.887 | 8.845 | 8.812 | 8.786 | 8.703 | 8.660 | 8.526 |
4 | 7.709 | 6.994 | 6.591 | 6.388 | 6.256 | 6.163 | 6.094 | 6.041 | 5.999 | 5.964 | 5.858 | 5.803 | 5.628 |
5 | 6.608 | 5.786 | 5.409 | 5.192 | 5.050 | 4.950 | 4.876 | 4.818 | 4.722 | 4.753 | 4.619 | 4.558 | 4.365 |
6 | 5.987 | 5.143 | 4.757 | 4.534 | 4.387 | 4.284 | 4.207 | 4.147 | 4.099 | 4.060 | 3.938 | 3.874 | 3.669 |
7 | 5.591 | 4.737 | 4.347 | 4.120 | 3.972 | 3.866 | 3.787 | 3.726 | 3.677 | 3.637 | 3.511 | 3.445 | 3.230 |
8 | 5.318 | 4.459 | 4.066 | 3.838 | 3.687 | 3.581 | 3.500 | 3.438 | 3.388 | 3.347 | 3.218 | 3.150 | 2.928 |
9 | 5.117 | 4.256 | 3.863 | 3.633 | 3.482 | 3.374 | 3.293 | 3.230 | 3.179 | 3.137 | 3.006 | 2.936 | 2.707 |
10 | 4.965 | 4.103 | 3.708 | 3.478 | 3.326 | 3.217 | 3.135 | 3.072 | 3.020 | 2.978 | 2.845 | 2.774 | 2.538 |
11 | 4.844 | 3.982 | 3.587 | 3.257 | 3.204 | 3.095 | 3.012 | 2.948 | 2.896 | 2.854 | 2.719 | 2.646 | 2.404 |
12 | 4.747 | 3.885 | 3.490 | 3.259 | 3.106 | 2.996 | 2.913 | 2.849 | 2.796 | 2.753 | 2.617 | 2.544 | 2.296 |
13 | 4.667 | 3.806 | 3.411 | 3.179 | 3.025 | 2.915 | 2.832 | 2.767 | 2.714 | 2.671 | 2.533 | 2.459 | 2.206 |
14 | 4.600 | 3.739 | 3.344 | 3.112 | 2.958 | 2.848 | 2.764 | 2.699 | 2.646 | 2.602 | 2.463 | 2.388 | 2.131 |
15 | 4.534 | 3.682 | 3.287 | 3.056 | 2.901 | 2.790 | 2.707 | 2.641 | 2.588 | 2.544 | 2.403 | 2.328 | 2.066 |
16 | 4.494 | 3.634 | 3.239 | 3.007 | 2.852 | 2.741 | 2.657 | 2.591 | 2.538 | 2.494 | 2.352 | 2.276 | 2.010 |
17 | 4.451 | 3.592 | 3.197 | 2.965 | 2.810 | 2.699 | 2.614 | 2.548 | 2.494 | 2.450 | 2.308 | 2.230 | 1.960 |
18 | 4.414 | 3.555 | 3.160 | 2.928 | 2.773 | 2.661 | 2.577 | 2.510 | 2.456 | 2.412 | 2.269 | 2.191 | 1.917 |
19 | 4.381 | 3.552 | 3.127 | 2.895 | 2.740 | 2.628 | 2.544 | 2.477 | 2.423 | 2.378 | 2.234 | 2.155 | 1.878 |
20 | 4,351 | 3.493 | 3.098 | 2.866 | 2.711 | 2.599 | 2.514 | 2.447 | 2.393 | 2.348 | 2.203 | 2.124 | 1.843 |
\(\infty\) | 3.842 | 2.996 | 2.605 | 2.372 | 2.214 | 2.099 | 2.010 | 1.938 | 1.880 | 1.831 | 1.666 | 1.570 | 1.000 |
\(\frac {\nu_\text{num}\ce{->} }{\nu_{denom} \ce{ v }}\) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 15 | 20 | \(\infty\) |
1 | 647.8 | 799.5 | 864.2 | 899.6 | 921.8 | 937.1 | 948.2 | 956.7 | 963.3 | 968.6 | 984.9 | 993.1 | 1018 |
2 | 38.51 | 39.00 | 39.17 | 39.25 | 39.30 | 39.33 | 39.36 | 39.37 | 39.39 | 39.40 | 39.43 | 39.45 | 39.50 |
3 | 17.44 | 16.04 | 15.44 | 15.10 | 14.88 | 14.73 | 14.62 | 14.54 | 14.47 | 14.42 | 14.25 | 14.17 | 13.90 |
4 | 12.22 | 10.65 | 9.979 | 9.605 | 9.364 | 9.197 | 9.074 | 8.980 | 8.905 | 8.444 | 8.657 | 8.560 | 8.257 |
5 | 10.01 | 8.434 | 7.764 | 7.388 | 7.146 | 6.978 | 6.853 | 6.757 | 6.681 | 6.619 | 6.428 | 6.329 | 6.015 |
6 | 8.813 | 7.260 | 6.599 | 6.227 | 5.988 | 5.820 | 5.695 | 5.600 | 5.523 | 5.461 | 5.269 | 5.168 | 4.894 |
7 | 8.073 | 6.542 | 5.890 | 5.523 | 5.285 | 5.119 | 4.995 | 4.899 | 4.823 | 4.761 | 4.568 | 4.467 | 4.142 |
8 | 7.571 | 6.059 | 5.416 | 5.053 | 4.817 | 4.652 | 4.529 | 4.433 | 4.357 | 4.259 | 4.101 | 3.999 | 3.670 |
9 | 7.209 | 5.715 | 5.078 | 4.718 | 4.484 | 4.320 | 4.197 | 4.102 | 4.026 | 3.964 | 3.769 | 3.667 | 3.333 |
10 | 6.937 | 5.456 | 4.826 | 4.468 | 4.236 | 4.072 | 3.950 | 3.855 | 3.779 | 3.717 | 3.522 | 3.419 | 3.080 |
11 | 6.724 | 5.256 | 4.630 | 4.275 | 4.044 | 3.881 | 3.759 | 3.644 | 3.588 | 3.526 | 3.330 | 3.226 | 2.883 |
12 | 6.544 | 5.096 | 4.474 | 4.121 | 3.891 | 3.728 | 3.607 | 3.512 | 3.436 | 3.374 | 3.177 | 3.073 | 2.725 |
13 | 6.414 | 4.965 | 4.347 | 3.996 | 3.767 | 3.604 | 3.483 | 3.388 | 3.312 | 3.250 | 3.053 | 2.948 | 2.596 |
14 | 6.298 | 4.857 | 4.242 | 3.892 | 3.663 | 3.501 | 3.380 | 3.285 | 3.209 | 3.147 | 2.949 | 2.844 | 2.487 |
15 | 6.200 | 4.765 | 4.153 | 3.804 | 3.576 | 3.415 | 3.293 | 3.199 | 3.123 | 3.060 | 2.862 | 2.756 | 2.395 |
16 | 6.115 | 4.687 | 4.077 | 3.729 | 3.502 | 3.341 | 3.219 | 3.125 | 3.049 | 2.986 | 2.788 | 2.681 | 2.316 |
17 | 6.042 | 4.619 | 4.011 | 3.665 | 3.438 | 3.277 | 3.156 | 3.061 | 2.985 | 2.922 | 2.723 | 2.616 | 2.247 |
18 | 5.978 | 4.560 | 3.954 | 3.608 | 3.382 | 3.221 | 3.100 | 3.005 | 2.929 | 2.866 | 2.667 | 2.559 | 2.187 |
19 | 5.922 | 4.508 | 3.903 | 3.559 | 3.333 | 3.172 | 3.051 | 2.956 | 2.880 | 2.817 | 2.617 | 2.509 | 2.133 |
20 | 5.871 | 4.461 | 3.859 | 3.515 | 3.289 | 3.128 | 3.007 | 2.913 | 2.837 | 2.774 | 2.573 | 2.464 | 2.085 |
\(\infty\) | 5.024 | 3.689 | 3.116 | 2.786 | 2.567 | 2.408 | 2.288 | 2.192 | 2.114 | 2.048 | 1.833 | 1.708 | 1.000 |