Skip to main content
Chemistry LibreTexts

27: Bone Structure

  • Page ID
    143631
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Bone Structure Cumulative Problem

    Bone is a natural composite of collagen protein and the mineral hydroxyapatite.

    Nair, Gautieri, Chang & Buehler, “Molecular mechanics of mineralized fibrils in bone”, Nature Comm., 2013, 2720, 1-9.

    Collagen

    Collagen is a protein primarily made from glycine and proline amino acids.

    • Proline in collagen strands is S. Draw S-proline. Clearly indicate the chirality with wedges and dashes.

    • Draw the following short peptide:

      Gly-Gly-Pro-Gly-Gly-Asp-Pro-Gly

    This protein forms α-helices.

    • What IMF holds α-helices in that secondary structure?

    • Why aren’t α-helices made from prolines strong?

    • What about the shape of proline helps form α-helices?

    Tropocollagen

    Tropocollagen is a rod-shaped helical trimer.

    • What is holding the three strands together in this structure?

      • Clearly circle the atoms involved in this interaction.

      • Label the type of interaction.

    Screen Shot 2019-03-23 at 4.12.46 AM.png

    Hydroxyapatite

    Hydroxyapatite is made up of Ca2+, PO43- and OH-.

    • Draw a Lewis structure for PO43-.

    • What is the molecular geometry of this phosphate ion?

    • Provide an electron configuration for Ca2+.

    • In a unit cell, there are 3 P atoms and 13 O. Provide an empirical formula for hydroxyapatite consisting of Ca2+, PO43- and OH-.

    • Draw one Ca2+ ion bound to 3 bidentate phosphate ions.

    • What is coordination geometry of this structure?

    • Show the enantiomer.

    • In the actual structure, the phosphates ‘bridge’ between 2 Ca2+ ions. Draw a structure of a phosphate binding to two calcium ions.

    Salt bridges in bone structures

    Screen Shot 2019-03-23 at 4.17.10 AM.png

    In collagen, the number of salt bridges (ionic bonds) per unit cell is ~260, due to interactions between charged side chains of collagen: lysine, arginine, glutamic acid and aspartic acid.​​​​​​​

    lysine:

    • Draw neutral lysine.

    • Is the neutral side chain of lysine (acidic OR basic)?

    • Using curved arrows, show the acid-base reaction of the side chain of lysine.

    Aspartic acid:

    • Draw neutral aspartic acid.

    • Is the neutral side chain of aspartic acid (acidic OR basic)?

    • Using curved arrows, show the acid-base reaction of the side chain of aspartic acid.

    Salt Bridges within collagen:

    • (4 pts) Draw an ionic interaction between the two newly charged side chains.

    Salt bridges between collagen and hydroxyapatite:

    In the mineralized collagen, there is a high number of mineral–mineral salt bridges, due to the fact that the moieties forming HAP are highly charged: Ca2+, PO43- and OH-. Salt bridges are also found relevant between collagen and mineral phase (about 220 and 520 in 20% HAP and 40% HAP case, respectively), contributing to the increase in mechanical properties of mineralized fibrils.

    • Show an example of a salt bridge between a lysine side chain and mineral PO43- group.

    Bones

    Mineral crystals carry more stress, whereas the collagen protein carries more deformation.

    • Ionic Compounds are:

      rigid/brittle OR flexible/soft

    • Proteins are:

      rigid/brittle OR flexible/soft

    • Would a bone made out of ionic compounds be more likely to break?

    • Would a bone made out of proteins have much strength?

    A collagen molecule at high stress levels gets stretched and starts to uncoil, and eventually slides on the HAP surface.

    • At a catastrophic level of stress (think of a jackhammer on a sidewalk), what would happen to any material?

    • What happens to the intermolecular forces under stress?

    • How does the collagen slipping mechanism prevent catastrophe?

    • In your own words explain why bones are made from a mixture of tropocollagen and hydroxyapatite.


    27: Bone Structure is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?