Solubility and Ksp (Worksheet)
- Page ID
- 79520
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Name: ______________________________
Section: _____________________________
Student ID#:__________________________
Work in groups on these problems. You should try to answer the questions without referring to your textbook. If you get stuck, try asking another group for help.
Q1
Use the chemical \(AgCl\) to describe solubility, molar solubility and solubility product
Q2
Write balanced equations and solubility product expressions for the following compounds
- \(CuBr \)
- \(ZnC_2O_4\)
- \(Ag_2CrO_4 \)
- \(Hg_2Cl_2\)
- \(AuCl_3\)
- \(Mn_3(PO_4)_3\)
Q3.
Silver Chloride has a larger \(K_{sp}\) than silver carbonate (\(K_{sp} = 1.6 \times 10^{‐10}\) and \(8.1 \times 10^{‐12}\) respectively). Does this mean that \(AgCl\) also has a larger molar solubility than \(Ag_2CO_3\)? Explain.
Q4
Calculate the concentration of ions in the following saturated solutions
- \([I^‐]\) in \(AgI\) solutions with \([Ag^+ ] = 9.1 \times 10^{‐9}\)
- \([Al^{3+}]\) in \(Al(OH)_3\) solution with \([OH^‐ ] = 2.9 \times 10^{‐9}\)
Q5
From the solubility data given, calculate the solubility product for the following compounds:
- \(SrF_2\) \(7.3 \times 10^{‐2} g/L\)
- \(Ag_3PO_4\) \(6.7 \times 10^{‐3} g/L\)
Q6
The molar solubility of \(MnCO_3\) is \(4.2 \times 10^{‐6}\, M\). What is \(K_{sp}\) for this compound?
Q7
If 20.0 mL of 0.10 M \(Ba(NO_3)_2\) are added to 50.0 mL of 0.10 M \(Na_2CO_3\), will \(BaCO_3\) precipitate? Supply explanation and calculations to support answer.
Q8
A volume of 75 mL of 0.060 M \(NaF\) is mixed with 25 mL of 0.15 M \(Sr(NO_3)_2\). Calculate the concentrations in the final solution of \(NO_3^‐\), \(Na^+\), \(Sr^{2+}\), and \(F^‐\). (\(K_{sp}\) for \(SrF_2 = 20. \times 10^{‐10}\))
Q9
Calculate the \(K_{sp}\) for each of the salts whose solubility is listed below.
- \(CaSO_4\) at \(5.0 \times 10^{‐3} mol/L\)
- \(MgF_2\) at \(2.7 \times 10^{‐3} mol/L\)
- \(AgC_2H_3O_2\) at \(1.02 \,g/100 \,mL\)
- \(SrF_2\) at \(12.2 \,mg/100 \,mL\)
Q10
Calculate the solubility in moles/L of each of three salts and the concentration of the cations in mg/mL in each of the saturated solutions.
- \(AgCN\) with \(K_{sp} = 2.0 \times 10^{‐12}\)
- \(BaSO_4\) with \(K_{sp} = 1.5 \times 10^{‐9}\)
- \(FeS\) with \(K_{sp} = 3.7 \times 10^{‐19}\)
- \(Mg(OH)_2\) with \(K_{sp} = 9.0 \times 10^{‐12}\)
- \(Ag_2S\) with \(K_{sp} = 1.6 \times 10^{‐49}\)
- \(CaF_2\) with \(K_{sp} = 4.9 \times 10^{‐11}\)
Q11
Consider these slightly soluble salts:
- \(PbS\) with \(K_{sp} = 8.4 \times 10^{‐28}\)
- \(PbSO_4\) with \(K_{sp} = 1.8 \times 10^{‐8}\)
- \(Pb(IO_3)_2\) with \(K_{sp} = 2.6 \times 10^{‐13}\)
- Which is the most soluble?
- Calculate the solubility in moles/L for \(PbSO_4\).
- How many grams of \(PbSO_4\) dissolve in 1 L of solution?
- How can you decrease the concentration of \(Pb^{2+}(aq)\) in a saturated solution of \(PbSO_4\) solution?
- What is the concentration in moles/L of \(PbS\) in a saturated solution of the salt?
Q12
For each of these substances, calculate the milligrams of metallic ion that can remain at equilibrium in a solution having a \([OH^‐] = 1.0 \times 10^{‐4}\, mol/L\).
- \(Cu(OH)_2\) with \(K_{sp} = 1.6 \times 106{‐9}\)
- \(Fe(OH)_3\) with \(K_{sp} = 6.0 \times 10^{‐38}\)
- \(Mg(OH)_2\) with \(K_{sp} = 6.0 \times 10^{‐12}\)