Skip to main content
Chemistry LibreTexts

Solutions

  • Page ID
    11098
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)

    1. Calculate the DHorxn from the DHof for the following reaction:

    a) PbO (s) + CO (g) -------> Pb (s) + CO2 (g) DHorxn = -65.7 kJ

    b) SiH4 (g) + 2 O2 (g) -------> SiO2 (s) + 2 H2O (l) DHorxn = -1516.8 kJ

    c) 2 FeS2 (s) + 5.5 O2 (g) -------> Fe2O3 (s) + 4 SO2 (g) DHorxn = -1656.4 kJ

    2. Determine the DHrxn using Hess' Law

    a) Determine the enthalpy of formation for MnO2 (s)

    Mn (s) + O2 (g) --------> MnO2 (s)

    Given:

    4 Al (s) + 3 O2 (g) -------> 2 Al2O3 (s) DHrxn = -3352 kJ/mol

    4 Al (s) + 3 MnO2 (s) -------> 3 Mn (s) + 2 Al2O3 (s) DHrxn = -1937 kJ/mol

    DHf = -471.7 kJ/mol

    b) Determine the heat of hydrogenation for

    C3H4 (g) + 2 H2 (g) --------> C3H8 (g)

    Given:

    2 H2 (g) + O2 (g) -------> 2 H2O (l) DHrxn = -571.6 kJ/mol

    C3H4 (g) + 4 O2 (g) -------> 3 CO2 (g) + 2 H2O (l) DHrxn = -1937 kJ/mol

    C3H8 (g) + 5 O2 (g) -------> 3 CO2 (g) + 4 H2O (l) DHrxn = -2220 kJ/mol

    DHrxn = -288.6 kJ/mol


    Solutions is shared under a not declared license and was authored, remixed, and/or curated by Mark Draganjac.

    • Was this article helpful?