Skip to main content
Chemistry LibreTexts

7: Carbon NMR

  • Page ID
    332807
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    13C NMR Spectroscopy

    Nuclear magnetic resonance (NMR) spectroscopy involves the molecules absorbing electromagnetic energy in the radiofrequency range. Spin (on either an electron or a proton) has two possible values: up and down. NMR excitation involves the excitation of nuclei to a different possible spin state when placed in a magnetic field.

    Imagine a sample with lots of nuclei. Ordinarily, nuclei with up and down spins have the same energy, so the spins are random.

    clipboard_e44ca30659513182ac59e0069f4e59c01.png

    Spins in a Magnetic Field

    In an NMR experiment, the sample is placed in a magnetic field. In the external field, the spins tend to either align with the magnetic field or line up against the magnetic field. In a magnetic field, the two spin states have slightly different energies. A narrow majority of electrons will adopt the lower energy state.

    • Add several spins to the diagram below.

    clipboard_ec42ba385f2a1d4eb592225b9c1e38ae1.png

    Radio-frequency radiation is sent into the sample, and a few of the nuclei are promoted to the next level.

    • Fill in the spins after irradiation:

    clipboard_eaf3a08a92eb1b8dfb9e8b4628565e8b5.png

    NMR Experiment

    NMR measures wavelength of energy emitted as the nuclei ‘relax’ back to the ground state (aligned with the magnet).

    • Fill in the spins after relaxation.

    clipboard_eaf3a08a92eb1b8dfb9e8b4628565e8b5.png

    The frequency that a nucleus absorbs is mostly dependent on the bonding environment of the atom (chemical shift).

    • This chemical shift value tells us about types of bonding.
    • The number of different frequencies absorbed tells about the number of unique nuclei.

    13C NMR Spectroscopy Analysis

    Two types of information are found in the 13C – NMR spectra:

    1. Number of carbons: Each unique carbon atom appears as a signal/peak.
    2. Chemical Shift (\(\delta\)): The location of each peak depends on the chemical environment of the carbon atom.

    Let's look at both of these factors:

    1. Number of Unique Carbons
    • Make a model of pentane. clipboard_ea221ec187184d7ffe4fa76f5c73ab4b4.png
      • Hold it up to and have a teammate point to a specific carbon. Spins it a few times in the air and ask them to show you the carbon they originally selected.
      • You will notice that the molecule has symmetry and there are some carbons that are identical.
    • How many sets of equivalent carbons are there in pentane?
    • Only unique carbons will show up in the 13C NMR spectrum. So, there will be ____________ peaks for pentane.

    Symmetry and Peaks in NMR

    Only unique carbons will show up in the 13C NMR spectrum. So, there will only be three peaks for pentane (previous page).

    • Predict the number of peaks that would be present in the 13C spectrum for each of these compounds. Indicate symmetry.

    clipboard_ee47febd1e7a84aef65ef62f0669a38f8.png

    • Aromatic compounds are often seen in the laboratory. Predict the number of peaks that would be present in the 13C spectrum for each of these compounds. Remember that these compounds are flat. Indicate symmetry.

    clipboard_e02aa2304bcf75dd43cd7b4d3c360c783.png

    Chemical Shift (bonding environment)

    There are two factors that affect chemical shift:

    • Geometry
    • Dipole

    Geometry

    sp3 is tetrahedral (carbon with 4 single bonds)

    sp2 is trigonal planar (carbon with two single bonds and one double bond)

    clipboard_ef667d20974d6367ba330272915c8e937.png

    Dipole

    As the carbon of a functional group becomes more partially positive, it will appear further downfield (larger ppm). The carbon will feel more positive if it is bonded to a more electronegative atom.

    • Order the following functional groups by the dipole strength. (1 = carbon that feels the most neutral; 5 = carbon that feels the most positive.) Use the periodic table to evaluate the electronegativity of atoms.

    clipboard_e958ad77291d6ae5d58d31335a49bf7bf.png

    Analyze 13C NMR Spectra with Shift and Symmetry*

    * All spectra are either from SDBS (Japan National Institute of Advanced Industrial Science and Technology) or simulated.

    Alkanes

    • How many unique carbons in 2-methylbutane? Show a plane of symmetry.

    clipboard_e3c683af75799fd878ce2c42250b36303.png

    • Are the carbons sp3 or sp2? Where would you expect to see the peaks?

    This is the spectrum of 2-methylbutane.

    clipboard_e91f3e779c7d14dba7df8b4dc6f946100.png

    • Typically, sp3 C that are in non-polar bonding environments appear below _______ ppm.

    Alcohols and Amines

    1-pentanol and 1-pentyl amine are shown below.

    Sp3 carbons attached to a more electronegative atom are pulled downfield (to the left).

    • sp3 C-O are often between 50-80 ppm
    • sp3 C-N are often between 40-60 ppm
    • sp3 C-Cl are often between 35-80 ppm
    • sp3 C-Br are often between 25-55 ppm

    For these examples, determine

    • How many unique carbons?
    • Which is the atom bonded to the oxygen or nitrogen?

    clipboard_ecf8254a650709b56bd7061975125efd4.png

    clipboard_e792dda73bed3de3bd363a0d482a04d78.png

    Alkenes:

    Alkenes have sp2 carbons which typically appear between 120-160 ppm.

    This is a 13C NMR spectrum of 1-hexene: clipboard_ee1104c16249475caafab20093e870068.png

    • Identify the two sp2 carbons in the structure above.
    • Identify the two sp2 carbons in the spectrum below.

    clipboard_e9f0d4815e2f8b18850d776945067b62a.png

    Aromatic Rings:

    This is the spectrum of toluene (methylbenzene)

    For this structure, determine

    • How many unique carbons? Show the structure with a plane of symmetry.

    clipboard_e311c19eb2e7e2583de34c421b7f12198.png

    • Where will the sp3 CH3 appear?
    • The aromatic ring C atoms will appear between 120-160. Identify these atoms.

    clipboard_e873582882d59c10d2a9eceedc956b414.png

    Aromatic Ring with a Heteroatom

    This is the spectrum of anisole (methoxybenzene).

    • How many unique carbons? Show the structure with a plane of symmetry.

    clipboard_e52e7aaecfad86c22b1574fe8d179a7a0.png

    • Where will the sp3 CH3 appear?
    • Identify the peaks representing the atoms of the aromatic ring.

    clipboard_ecd42eaeada2fa22163b240c244d72fe3.png

    • How does the shifts of the methyl and the ring change with the presence of the oxygen? (Compare to spectrum of toluene on previous page).

    Carbonyl Compounds: Ketones and Aldehydes

    This is the spectrum of 2-pentanone. clipboard_e93cffc3126df8fef554aaec9e4a7002e.png

    • How many unique carbons? Show the structure with a plane of symmetry.
    • Where will the sp3 carbons appear?
    • Where does the C=O appear?

    clipboard_ec87b428ee12ed2c8d1e2b281ed8fd625.png

    Carbonyl carbons (aldehydes and ketones) appear between 200 and 220 ppm

    Carbonyl Compounds: Acid Derivatives

    The carbonyl group of acid derivatives such as esters and amides are shifted relative to the C=O of aldehydes and ketones.

    • Assign the peaks for the structure of propyl acetate below.

    clipboard_e1c1683ce79413488ae48f22935ae7919.png

    • Comment on the shift of aldehyde/ketones vs esters/amides.

    Summary of Chemical Shift Regions

    clipboard_ee1e9de069f0f6dd611a82189838986dc.png

    Note: The carbon atom in CDCl3 (typical solvent) appears at 77 ppm

    IR and 13C Application Problems

    • Complete data tables for the spectra.
    • Propose possible structures for the following sets of IR and 13C NMR spectra.

    A. C3H8O

    clipboard_e10bf567144556efd828b8e15b4d7a8b4.png

    Frequency Functional Group
    3350  
    2950  
    1450  
    1150  
    950  

    clipboard_e662af941ebb014eaaf237fa18ea6b6e3.png

    Chemical Shift Type of Bonding Environment Proposed Structure:
    10    
    25  
    62  

    B. C3H8O

    clipboard_efa3b06010c29cf141bfd2aeda7029cb6.png

    Frequency Functional Group
    3400  
    2990  
    1450  
    1125, 1175  
    9750  

    clipboard_ea1a8e4e110f73784b07db3c91d004a6d.png

    Chemical Shift Type of Bonding Environment Proposed Structure:
    22    
    62  

    C. C3H6O

    clipboard_e0fe207f7af29a9eb67ddfd2f3221ea9d.png

    Frequency Functional Group
    3000  
    1720  
    1450  

    clipboard_e6e23757975b6f23a0742646061f7d7db.png

    Chemical Shift Type of Bonding Environment Proposed Structure:
    30    
    205  

    D. C3H6O

    clipboard_e836858840e831990f7896eaf1b7d0459.png

    clipboard_eb319c7aa27a07d5f2ead32b9c87e36d5.png

    Frequency Functional Group
       
       
       
    Chemical Shift Type of Bonding Environment Proposed Structure:
         
       
       

    E. C5H10O

    clipboard_eda18b631d964e8d6e288ae032e80cfb2.png

    clipboard_e911fb5564c6f7e1daa3c621596900ab3.png

    Frequency Functional Group
       
       
       
    Chemical Shift Type of Bonding Environment Proposed Structure:
         
       
       

    F. C3H6O

    clipboard_e99f1bf9220dcb6a79482a2d8035fcb46.png

    clipboard_e342ec6f0873ef695ad7316f2bbb2cea9.png

    Frequency Functional Group
       
       
       
    Chemical Shift Type of Bonding Environment Proposed Structure:
         
       
       

    G. C8H8O (note: there are two peaks at about 130 ppm in the 13C-NMR)

    clipboard_e6f5bbdb95f39cac4c997e382fe10efcd.png

    clipboard_ee79236a4686e957f24bc252ff717c661.png

    Frequency Functional Group
       
       
       
       
    Chemical Shift Type of Bonding Environment Proposed Structure:
         
       
       
       
       

    H. C8H8O2 (note: there are four peaks between 122 and 135 ppm in the 13C-NMR)

    clipboard_efa2352f2851ac7e64b76d2f5337c830c.png

    clipboard_e27648238fa7e834ee6b90859add772aa.png

    Frequency Functional Group
       
       
       
       
    Chemical Shift Type of Bonding Environment Proposed Structure:
         
       
       
       
       

    I. C6H10O

    clipboard_e6caee7e3918fc7217e109cc341de3753.png

    clipboard_e6e354b1c17a1e8f81e7a49f2e6c940ed.png

    Frequency Functional Group
       
       
       
       
    Chemical Shift Type of Bonding Environment Proposed Structure:
         
       
       
       

    J. C5H10O2 (there may be more than one possible structure for this)

    clipboard_e51669055364d4b3dfbc78d4b6df68c43.png

    clipboard_e661f386ec447cb9669e16711c07d37d2.png

    Frequency Functional Group
       
       
       
       
    Chemical Shift Type of Bonding Environment Proposed Structure:
         
       
       
       
       

    K. C6H14O (there may be more than one possible structure for this)

    clipboard_e592690e05dc9c244e66dbc053c2db32b.png

    clipboard_efb51ebc387e34a0fc31cdea34685dfe5.png

    Frequency Functional Group
       
       
       
       
    Chemical Shift Type of Bonding Environment Proposed Structure:
         
       
       
       
       
       

    L. C6H12O2 (there may be more than one possible structure for this)

    clipboard_ed69f61787e8d616cca82263dbc88b483.png

    clipboard_eadb9e87e8ab11f20cff30fe0532b97af.png

    Frequency Functional Group
       
       
       
       
    Chemical Shift Type of Bonding Environment Proposed Structure:
         
       
       
       
       
       

    M. C8H9NO (there may be more than one possible structure for this)

    clipboard_e9b2e597ad4e56b5be2e128190c48f5f9.png

    clipboard_e5811d2f83f6062e591b6874694df970a.png

    Frequency Functional Group
       
       
       
       
    Chemical Shift Type of Bonding Environment Proposed Structure:
         
       
       
       
       
       

    This page titled 7: Carbon NMR is shared under a not declared license and was authored, remixed, and/or curated by Kate Graham.

    • Was this article helpful?