# Appendix 07: Critical Values for Grubb’s Test

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

The following table provides critical values for G(α, n), where α is the probability of incorrectly rejecting the suspected outlier and n is the number of samples in the data set. There are several versions of Grubb’s Test, each of which calculates a value for Gij where i is the number of suspected outliers on one end of the data set and j is the number of suspected outliers on the opposite end of the data set. The values given here are for G10, where

$G_\ce{exp} = G_{10} = \dfrac{|X_\ce{out} - \overline{X}|}{s}$

The suspected outlier is rejected if Gexp is greater than G(α, n).

G(α, n) for Grubb’s Test of a Single Outlier
α⇒ 0.05 0.01
n
3 1.155 1.155
4 1.481 1.496
5 1.715 1.764
6 1.887 1.973
7 2.020 2.139
8 2.126 2.274
9 2.215 2.387
10 2.290 2.482
11 2.355 2.564
12 2.412 2.636
13 2.462 2.699
14 2.507 2.755
15 2.549 2.755