# 13.5: Yield Calculations Using Conversion Factors

$$\newcommand{\vecs}{\overset { \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}{\| #1 \|}$$ $$\newcommand{\inner}{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$$$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

From the balanced equation we know this to be a 1:1 reaction, meaning that one mole of starting material should yield one mole of product. It is frequently easier to calculate actual yield using moles (or millimoles) rather than grams. Practically any kind of conversion is most easily handled by using conversion factors. In this reaction we start with 1.5 mL of alcohol. In millimoles, this would be

$$1.5 mL \times \frac{0.914g}{1mL} \times {1mmol}{.114g} = 12.03 mmol \: of \: alcohol$$

Likewise, once the alkene product has been weighed, the weight can be easily transformed into mmoles to calulate the percent yield of the reaction.

$$\frac{x \: mmoles \: alkene \: obtained}{12.03mmol \: (theoretical \: yield)} \times 100 = \% yield$$

This page titled 13.5: Yield Calculations Using Conversion Factors is shared under a not declared license and was authored, remixed, and/or curated by Sergio Cortes.