Particle in a Two Finite Boxes Potential (Python Notebook)
- Page ID
- 279725
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Part 4: Particle in a two finite boxes potential
Approaching the problem
We can extend the calculations for the particle in a finite potential box (presented in a previous notebook) and apply it to a particle contained within two boxes separated by a barrier, all with independent finite potentials. In this problem, not only is the height of the potentials important, but the distance between them is also critical to the understanding of the behavior of the particle.
This is the potential \(V(x)\) we are going to consider:

Or mathematically:
\[V(x) = \left\{ \begin{array}{lll} I: & V_o & \; \text{if } \; x \leq -\left(\frac{d}{2}+ L \right) \\ II: & 0 & \; \text{if}\; -\left(\frac{d}{2} +L\right) \leq x \leq -\frac{d}{2} \\ III: & V_1 & \; \text{if }\; -\frac{d}{2} \leq x \leq \frac{d}{2} \\ IV: & 0 & \; \text{if } \;\frac{d}{2} \leq x \leq \frac{d}{2}+L \\ V: & V_o & \; \text{if } \; x \geq \frac{d}{2}+ L \end{array} \right.\]
For simplicity, this section only considers the case in which \(V_1 \geq V_o\).
As it was the case for a single box, the interesting situation is when \(E \leq V_o\) and we look for the bound states. For energies larger than \(V_o\) and \(V_1\) the particle will be a free particle.
Since the potential is even (\(V(-x) = V(x)\)), the wavefunctions can be chosen to be even (i.e., \(\psi(-x) = \psi(x)\)) or odd \(i.e., \(\psi(-x) = -\psi(x)\)). Applying the first constrain, in which we consider that the wavefunctions must be finite, leads to the solutions for the Schrödinger equation for \(E \leq V_o\) (bounded states) as:
Solutions
\[\psi(x) = \pm \psi(-x)\]
\[\begin{array} {lll} \text{For } I: & \psi(x) = \pm\; De^{\alpha_o x} \\ \text{For } II: & \psi(x) = \pm \left[B\cos(kx) + C\sin(kx)\right] \\ \text{For } III: & \psi(x) = A\left(e^{\alpha_1 x}\pm e^{-\alpha_1 x}\right) \\ \text{For } IV: & \psi(x) = B\cos(kx) + C\sin(kx) \\ \text{For } V: & \psi(x) = De^{-\alpha_o x} \\ \end{array} \label{1}\]
where the \(\pm\) corresponds to the even or odd solutions, respectively. As before, the wavefunctions and their first derivatives must be continuous. In addition, at the boundaries between regions, the wavefucntions must have the same value.
After imposing the continuity and boundary conditions we reach the following relation for the allowed energy values:
Even solutions
\[\frac{\alpha_1\tanh\left(\alpha_1\frac{d}{2}\right)+k\tan\left(k\frac{d}{2}\right)}{k-\alpha_1\tanh\left(\alpha_1\frac{d}{2}\right)\tan\left(k\frac{d}{2}\right)}=\frac{-\alpha_o+k\tan\left[k\left(\frac{d}{2}+L\right)\right]}{k+\alpha_o\tan\left[k\left(\frac{d}{2}+L\right)\right]} \label{2}\]
Odd solutions
\[\frac{k\tanh\left(\alpha_1\frac{d}{2}\right)-\alpha_1\tan\left(k\frac{d}{2}\right)}{\alpha_1+k\tanh\left(\alpha_1\frac{d}{2}\right)\tan\left(k\frac{d}{2}\right)}=\frac{k+\alpha_o\tan\left[k\left(\frac{d}{2}+L\right)\right]}{-\alpha_o+k\tan\left[k\left(\frac{d}{2}+L\right)\right]} \label{3}\]
where:
\[\alpha_o = \frac{\sqrt{2m(V_o-E)}}{\hbar} \alpha_1 = \frac{\sqrt{2m(V_1-E)}}{\hbar} \hspace 3cm k = \frac{\sqrt{2mE}}{\hbar}\]
The allowed solutions will be those corresponding to energies that obey equations 2 and 3. Once we find the allowed energies, we can go back and obtain the wavefunctions with the proper coefficients.
Finding the allowed Energies graphically
The allowed values of \(E\) can be found numerically, yielding:
Since the lowest energy corresponds to the even solution of the wavefunction, and the states are labeled by their quantum number $(n=1,2...n_{max})$, the even solutions will correspond to odd quantum numbers and the odd solutions will correspond to even quantum numbers.
Plotting an Energy Diagram helps us to see the energy separation between the states
We can now plug the values of \(E\) back into the wavefunction expressions and plot the wavefunctions and the corresponding probability densities.
The even wavefunctions maintain the numbers of nodes as in the separate boxes, while the odd solutions have an additional node at the center of the barrier. Since the lowest energy corresponds to the even solution of the wavefunction, and the states are labeled by their quantum number (\(n=1, 2, ..., n_{max}\)), the even solutions will correspond to odd quantum numbers and the odd solutions will correspond to even quantum numbers.
When the boxes are close together, the coupling effect between both boxes is observed. The energy levels of the single finite box split into two levels for the two-box potential: one higher (odd solutions) and one lower in energy (even solutions). The even solution wavefunctions have the unusual result of a probability density of finding the particle inside the \(V_1\) barrier (area shaded in cyan) to be larger, while for the odd solutions, the probability of finding the particle between the boxes reaches zero.
Tunneling Probability
The tunneling probability (areas shaded in green in the graphs above) correspond to the area under the probability densities outside both boxes, that is, for \(x \geq \frac{d}{2}+L\) and for \(x \leq -\frac{d}{2}-L\). It corresponds to:
\[ \dfrac{\displaystyle \int^{-\frac{d}{2}-L}_{-\infty} |\psi(x)|^2\ dx + \displaystyle \int^{+\infty}_{\frac{d}{2}+L} |\psi(x)|^2\ dx }{\displaystyle \int_{-\infty}^{+\infty} |\psi(x)|^2\ dx }\]
It is also interesting to evaluate the probability of finding the particle inside the barrier (area shaded in purple in the cell above), that is, between \(-\frac{d}{2} \leq x \leq \frac{d}{2}\). This probability equals to:
\[ \frac{\displaystyle \int_{-\frac{d}{2}}^{\frac{d}{2}} |\psi(x)|^2\ dx}{ \displaystyle \int_{-\infty}^{+\infty} |\psi(x)|^2\ dx }\]
These integrals can be solved analytically (for the even and for the odd solutions). After doing that, the tunneling probability and probability of being inside the barrier for each state is: