Loading [MathJax]/jax/output/HTML-CSS/fonts/TeX/fontdata.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

5.12: Chemical Shifts in 1H NMR Spectroscopy

( \newcommand{\kernel}{\mathrm{null}\,}\)

Objectives

After completing this section, you should be able to

  1. state the approximate chemical shift (δ) for the following types of protons:
    1. aromatic.
    2. vinylic.
    3. those bonded to carbon atoms which are in turn bonded to a highly electronegative element.
    4. those bonded to carbons which are next to unsaturated centres.
    5. those bonded to carbons which are part of a saturated system.
  2. predict the approximate chemical shifts of each of the protons in an organic compound, given its structure and a table of chemical shift correlations.
Study Notes

You should not attempt to memorize the chemical shifts listed in the table of this section, although it is probable that you will need to refer to it quite frequently throughout the remainder of this course. To fulfil Objective 1, above, you should be familiar with the information presented in the figure of chemical shift ranges for organic compounds. If you have an approximate idea of the chemical shifts of some of the most common types of protons, you will find the interpretation of 1H NMR spectra less arduous than it might otherwise be. Notice that we shall not try to understand why aromatic protons are deshielded or why alkynyl protons are not deshielded as much as vinylic protons. These phenonomena can be explained, but the focus is on the interpretation of 1H NMR spectra, not on the underlying theory.

1H NMR Chemical Shifts

Chemical shift is associated with the Larmor frequency of a nuclear spin to its chemical environment. Tetramethylsilan[TMS;(CH3)4Si] is generally used for standard to determine chemical shift of compounds: δTMS=0ppm. In other words, frequencies for chemicals are measured for a 1H or 13C nucleus of a sample from the 1H or 13C resonance of TMS. It is important to understand trend of chemical shift in terms of NMR interpretation. The proton NMR chemical shift is affect by nearness to electronegative atoms (O, N, halogen.) and unsaturated groups (C=C,C=O, aromatic). Electronegative groups move to the down field (left; increase in ppm). Unsaturated groups shift to downfield (left) when affecting nucleus is in the plane of the unsaturation, but reverse shift takes place in the regions above and below this plane. 1H chemical shift play a role in identifying many functional groups. Figure 1. indicates important example to figure out the functional groups.

Figure 1. 1H chemical shift ranges for organic compounds

Chemical shift values are in parts per million (ppm) relative to tetramethylsilane.

Hydrogen type Chemical shift (ppm)
RCH3 0.9 - 1.0
RCH2R 1.2 - 1.7
R3CH 1.5 – 2.0
  2.0 – 2.3
image003.png 1.5 – 1.8
RNH2 1 - 3
ArCH3 2.2 – 2.4
image005.png 2.3 – 3.0
ROCH3 3.7 – 3.9
image009.png 3.7 – 3.9
ROH 1 - 5
image011.png 3.7 – 6.5
image013.png 5 - 9
ArH 6.0 – 8.7
image015.png 9.5 – 10.0
image017.png 10 - 13

Exercises

Exercise 5.12.1

The following have one H1 NMR peak. Predict where these peaks would be in a spectra. (MAY not be exact, but will be close)

13.9.png

Answer

A. 5.20 δ

B. 1.50 δ

C. 6.40 δ

D. 1.00 δ

Exercise 5.12.2

Identify the different protons in the following molecule and predict where they would be on a chemical spectrum.

13.9(2).png

Answer

There are 6 different protons in this molecule

The shifts are (close) to the following: a. 2 δ; b. 6 δ; c. 6.5 δ; d. 7 δ; e. 7.5 δ; f. 7 δ

13-9-2sol.png

 

Contributors and Attributions


5.12: Chemical Shifts in 1H NMR Spectroscopy is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

  • Was this article helpful?

Support Center

How can we help?