Answers to Chapter 12 Study Questions
- Page ID
- 11188
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)
-
- 1 mole \(\ce{CO2}\)
- \(\mathrm{0.050 - 0.030\: moles/liter = 0.020\: moles/liter}\)
- \(\mathrm{conc.\: of\: CO_2\: produced = conc.\: of\: CH_4\: used\: up}\)
\(\mathrm{conc.\: of\: CO_2\: after\: 20\: min\: = 0.050 - 0.020 = 0.030\: mol/L}\)
- \(\mathrm{rate=\dfrac{\Delta [CO_2]}{\Delta time}}\)
- \(\mathrm{rate=\dfrac{\Delta[CO_2]}{\Delta time}=\dfrac{0.030-0.020\,mol/L}{20-10\,min}=\dfrac{0.0010\,mol/L}{min}}\)
- \(\mathrm{conc.\: of\: CO_2\: after\: 30\: min = 0.050 - 0.015 = 0.035\: mol/L}\)
\(\mathrm{rate=\dfrac{\Delta[CO_2]}{\Delta time}=\dfrac{0.035-0\,mol/L}{30-0\,min}=\dfrac{1.2\times10^{-3}\,mol/L}{min}}\)
- \(\mathrm{rate=\dfrac{\Delta[CO_2]}{\Delta time}=-\dfrac{\Delta [O_2]}{2\Delta t}}\); \(\mathrm{\dfrac{\Delta [O_2]}{\Delta t}=-2\dfrac{\Delta[CO_2]}{\Delta time}}\)
- \(\mathrm{rate=\dfrac{\Delta [O_2]}{\Delta t}=-2\dfrac{\Delta[CO_2]}{\Delta time}}\) from e) \(\mathrm{\dfrac{\Delta [CO_2]}{\Delta time}=\dfrac{0.0010 \, mol/L}{min}}\)
\(\mathrm{\dfrac{\Delta [O_2]}{\Delta t} = -2(0.0010) = \dfrac{- 0.0020\: mol/L}{min}}\)
- 1 mole \(\ce{CO2}\)
-
- The mechanism, and therefore the number of steps in a reaction, are determined experimentally.
- The second step; it's the slowest step.
- \(\mathrm{rate = k \times (concentration\: NO_3) \times (concentration\: NO)}\)
- rate increases by a factor of \(\mathrm{\dfrac{3}{2}}\)
\(\mathrm{\left(\dfrac{1}{2} \times 3 = \dfrac{3}{2}\right)}\) - the order with respect to \(\ce{NO}\) is 1; the overall order is 2.

-
- concentration of reactants: Reaction rate increases as concentration of reactants increases because number of collisions increases, making reaction more likely to occur.
- surface area of reactants: Rate increases as surface area of reactants increases because the greater the area of reactant exposed, the more likely are collisions that will result in product formation.
- temperature: As temperature increases, rate increases because at higher temperature, a greater proportion of reactant molecules have a kinetic energy greater than the activation energy so a greater proportion of collisions result in product formation.
- catalyst: Catalysts increase reaction rate by lowering the activation energy.
- inhibitors: Inhibitors decrease reaction rate by destroying a catalyst, reducing effective surface area or by using up reactant.
-
- \(\ce{2 N2O(g) \rightarrow 2 N2(g) + O2(g)}\)
- \(\ce{N2O(g) \rightarrow N2 + O}\); \(\ce{N2O(g) + O \rightarrow N2 + O2}\)
- \(\ce{O}\)
-
- \(\mathrm{rate = k [HgCl_2]^n \times [C_2O_4^{2-}]^m}\)
\(\mathrm{\dfrac{rate_2}{rate_1}=\dfrac{k[HgCl_2]_2^n}{k[HgCl_2]_1^n}=\left(\dfrac{[HgCl_2]_2}{[HgCl_2]_1}\right)^n}\)
\(\mathrm{\dfrac{2.6\times10^{-7}}{1.3\times10^{-7}}=\left(\dfrac{0.20}{0.10}\right)^n}\)
\(\mathrm{2 = 2^n}\) ; \(\mathrm{n = 1}\)
order with respect to \(\ce{HgCl2}\) is 1. (Rate is proportional to \(\ce{[HgCl2]}\).)
\(\mathrm{\dfrac{rate_2}{rate_1}=\dfrac{k[C_2O_4^{2-}]_2^m}{k[C_2O_4^{2-}]_1^m}=\left(\dfrac{[C_2O_4^{2-}]_2}{[C_2O_4^{2-}]_1}\right)^m}\)
\(\mathrm{\dfrac{5.2\times10^{-7}}{1.3\times10^{-7}}=\left(\dfrac{0.20}{0.10}\right)^m}\)
\(\mathrm{4 = 2^m}\) ; \(\mathrm{m = 2}\)
order with respect to \(\ce{C_2O_4^{2-}}\) is 2. Overall order is 3.
- \(\mathrm{rate = k [HgCl_2] [C_2O_4^{2-}]^2}\)
- \(\mathrm{rate = k [HgCl_2] [C_2O_4^{2-}]^2}\) ; \(\mathrm{1.3 \times 10^{-7} = k (0.10)(0.10)^2}\); \(\mathrm{k = \dfrac{1.3 \times 10^{-7}}{0.001} = 1.3 \times 10^{-4}}\)
- \(\mathrm{rate = 1.3 \times 10^{-4} \times [HgCl_2] [C_2O_4^{2-}]^2}\); \(\mathrm{rate = 1.3 \times 10^{-4} \times (0.30) (0.30)^2 = \dfrac{3.5 \times 10^{-6}\:mol/L}{s}}\)


