Extra Credit 7
- Page ID
- 94074
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\dsum}{\displaystyle\sum\limits} \)
\( \newcommand{\dint}{\displaystyle\int\limits} \)
\( \newcommand{\dlim}{\displaystyle\lim\limits} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\(\newcommand{\longvect}{\overrightarrow}\)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)LAST TIME
Build up to Schrödinger Equation: some wonderful surprises
- operators
- eigenvalue equations
- operators in quantum mechanics – especially \(\hat{x} = x\) and \(\hat{p_x} = -i \hbar \frac{\partial}{\partial x}\)
- non-commutation of \(\hat{x}\) and \(\hat{p_x}\) : related to the uncertainty principle
- wavefunctions: probability amplitude, continuous! therefore no perfect localization at a point in space
- expectation value (and normalization)
- \( \hat{H} \Psi = E \Psi\)
- Free Particle
- Particle in 1-D Box (first viewing)
Today:
1. Review of Free Particle
some simple integrals
2. Review of Particle in 1-D “Infinite” Box
boundary conditions
pictures of \(\Psi_n(x)\), Memorable Qualitative features
3. Crude uncertainties, \(\Delta x\) and \(\Delta p\), for Particle in Box
4. 3-D Box
separation of variables
Form of \(E_ {n_x,n_y,n_z}\) and \(\Psi_ {n_x,n_y,n_z}\)
1. Review of Free Particle: \(V(x) = V_0\)
\(\Psi_ {|k|}(x) = ae^{+ikx} + be^{-ikx}\) complex oscillatory (because \(E < V_0\) )
\(E_k = \frac{{(\hbar k)}^2}{2m} + V_0\) k is not quantized
\(\int_{-\infty}^{\infty}|\Psi_ {|k|}(x)|^2 dx =\int_{-\infty}^{\infty}[{|a|^2}+{|b|^2}+(a^*be^{-ikx}+ab^*e^{ikx})] dx \)
\(={|a|^2} {\infty}+{|b|^2} {\infty}+a^*b0+ab^*0\) (Note what happens to the product \(e^{-ikx}e^{+ikx}\))
can’t normalize \(\Psi=ae^{ikx}\) to 1.
\(\int_{-\infty}^{\infty} dx {|a|^2}e^{-ikx}e^{+ikx} = \int_{-\infty}^{\infty} dx {|a|^2}\)
which blows up. Instead, normalize to specified # of particles between x1 and x2.
Questions:
Is \(\Psi_ {|k|}(x) = ae^{+ikx} + be^{-ikx}\) an eigenfunction of \(\hat{p_x}\) ? \(\hat{(p^2)_x}\) ? What do your answers mean? Is \(e^{+ikx}\) eigenfunction of \(\hat{p_x}\) ? What eigenvalue?
2. Review of Particle in 1-D Box of length a, with infinitely high walls
“infinite box” or “PIB”
In view of its importance in starting you out thinking about quantum mechanical particle in a well problems, I will work through this problem again, carefully.
\(V(x) = 0\) \(0 ≤ x ≤ a\)
\(V(x) = {\infty}\) \(x<0, x>a\)

Consider regions I and III.
\(E<V(x)\)
\[\hat{H} = -\frac{\hbar}{2m} \frac{d^2}{dx^2} + {\infty}\]
\[\frac{\hbar}{2m} \frac{d^2}{dx^2} \Psi = ({\infty}-E) \Psi\]
(no matter what finite value we choose for E, the Schrödinger equation can only be satisfied by setting \(\Psi(x) = 0\) throughout regions I and III.)
So we know that \(\Psi(x) = 0\) \(x<0, x>a\)
but \(\Psi(x)\)must be continuous everywhere, thus\(\Psi(0)=\Psi(a) = 0\). These are boundary conditions.
Note, however, that for finite barrier height and width, we will eventually see that it is possible for \(\Psi(x)\) to be nonzero in a classically forbidden \(E<V(x)\) region. “Tunneling.” (There will be a problem on Problem Set #3 about this.)
So we solve for \(\Psi(x)\) in Region II, which looks exactly like the free particle because \(V(x) = 0\) in Region II. Free particle solution are written in sin, \(cos\) form rather than \(e^{-ikx}\) form, because application of boundary conditions is simpler. [This is an example of finding a general principle and then trying to find a way to violate it.]
\(\Psi (x) = Asin kx + Bcos kx\)
Apply boundary conditions
\(\Psi (0) = 0 = 0+B → B=0\)
\(\Psi (a) = 0 =Asin ka ⇒ ka = n\pi\), \(k = \frac{n \pi}{a} \)
Normalize: \[1=\int_{-\infty}^{\infty} dx \Psi^* \Psi = A^2 \int_{0}^{a} dx sin^2 \frac{n \pi}{a} x\]
→ \(A = \left(\frac{2}{a} \right)^\frac{1}{2}\) (Picture of normalization integrand suggests that the value of the normalization integral \(=\frac{a}{2}\))
Non-Lecture
Normalization integral for particle-in-a-box eigenfunctions
\(\Psi_n(x) = Asin \frac{n \pi}{a}x\)
Normalization (one particle in the box) requires \(\int_{-\infty}^{\infty} dx \Psi^*\Psi = 1 \).
For\(V(x) = 0\), \(0 ≤ x ≤ a\) infinite wall box:
\[1=\int_{-\infty}^{0} dx \Psi^*\Psi+\int_{0}^{a} dx \Psi^*\Psi+\int_{a}^{\infty} dx \Psi^*\Psi = 0 + {|A|^2} \int_{0}^{a} dx {sin^2}\frac{n \pi}{a}x + 0\]
\(1=|A|^2 \int_{0}^{a} dx sin^2 \frac{n \pi}{a} x\)
Definite integral
\[\int_{0}^{ \pi} dy {sin^2}y=\frac{\pi}{2}\]
change variable: \[y=\frac{n \pi}{a}x\] \[ dy =\frac{n \pi}{a} dx \] \[dx =\frac{a}{n \pi} dy \]
limits of integration:
\[ x=0 ⇒ y=0\]
\[ x=a ⇒ y={n \pi}\]
\[ \int_{0}^{a} dx {sin^2}\frac{n \pi}{a}x = \int_{0}^{n \pi} (\frac{a}{n \pi} ) dy {sin^2}y = \frac{a}{n \pi}n (\frac{\pi}{2}) = \frac{q}{2}\]
\(1=|A|^2 \frac{a}{2} \), Thus \(A = \left(\frac{2}{a} \right)^\frac{1}{2}\)
\(\Psi_n(x) = Asin \frac{n \pi}{a}x\) (A very good equation to remember! )
End of Non-Lecture
Find \(E_n\). These are all of the allowed energy levels.
\( \hat{H} \Psi_n = E_n \Psi_n\)
\[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} \Psi_n = E_n \Psi_n\]
\[-\frac{\hbar^2}{2m} {(k_n)^2}=E_n=\frac{h^2}{4 \Pi^2} \frac{1}{2m} \frac{n^2 \Pi^2}{a^2} = n^2(\frac{h^2}{8ma^2} )\]
\[(k_n)^2=\frac{n^2 \Pi^2}{a^2}, (\frac{h^2}{8ma^2} )=E_1\]
\[n=1, 2, …\]
n = 0 would correspond to empty box
Energy levels are integer multiples of a common factor, \[E_n=E_1n^2\]. (This will turn out to be of special significance when we look at solutions of the time-dependent Schrödinger equation (Lecture #13).

All bound systems have their lowest energy level at an energy greater than the energy of the bottom of the well: “zero-point energy”
This zero-point energy is a manifestation of the uncertainty principle. Why? What is the momentum of a state with zero kinetic energy? Is this momentum perfectly specified? What does that require about position?
3. Crude estimates of \(\Delta x \Delta p\)
(we will make a more precise definition of uncertainty in the next lecture)
\(\Delta x = a\) for all n (the width of the well)
\(\Delta p_n = +\hbar k_n-(-\hbar k_n) = 2\hbar |k_n|=2\hbar \frac{n \pi}{a}\)
\(=\frac{2}{2 \pi}h\frac{n \pi}{a}=h\frac{n}{a}\)
The joint uncertainty is
\(\Delta x_n \Delta p_n=(a)\frac{nh}{a}=hn\) which increases linearly with n.
n = 0 would imply \(\Delta p_n=0\) and the uncertainty principle would then require \(\Delta x_n={\infty}\) , which is impossible! This is an indirect reason for the existence of zero-point energy.
Since the uncertainty principle is \(\Delta x \Delta p = h\)
it appears that the n = 1 state is a minimum uncertainty state. It will be generally true that the lowest energy state in a well is a minimum uncertainty state.
4. Use the 3-D box to illustrate a very convenient general result: separation of variables.
Whenever it is possible to write \(\hat{H}\) in the form:
\(\hat{H}=\hat{h_x}+\hat{h_y}+\hat{h_z}\) (provided that the additive terms are mutually commuting)
\(\hat{p_x}^2+V_x(\hat{x})+etc\).
it is possible to obtain ψ and E in separated form (which is exceptionally convenient!):
\(\Psi(x, y, z )= \Psi_x(x)\Psi_y(y)\Psi_z(z)\)
\(E=E_x+E_y+E_z\).
Or, more generally, when
\(\hat{H}=\sum_{i=1}^{n} \hat{h_i}(q_i)\)
then \(\Psi=\sum_{i=1}^{n} \Psi_i(q_i)
\(E=\sum_{i=1}^{n} E_i\)
Consider the specific example of the 3-D box with edge lengths a, b, and c.
\(V(x, y, z)=0\), \(0 ≤ x ≤ a, 0 ≤ y ≤ b, 0 ≤ z ≤ c\), otherwise \(V={\infty}\).
This is a special case of \(V(x, y, z)=V_x+V_y+V_z\).
\(T(\hat{p_x}+\hat{p_y}+\hat{p_z}) =-\frac{\hbar^2}{2m} [\dfrac {\partial^2}{\partial x^2}+\dfrac {\partial^2}{\partial y^2}+\dfrac {\partial^2}{\partial z^2}]\)
\(\hat{H}(x, y, z) = [-\frac{\hbar^2}{2m} \dfrac {\partial^2}{\partial x^2}+V_x(\hat{x})]+ [-\frac{\hbar^2}{2m} \dfrac {\partial^2}{\partial y^2}+V_y(\hat{y})]+ [-\frac{\hbar^2}{2m} \dfrac {\partial^2}{\partial z^2}V_z(\hat{z})]\)
\(=\hat{h_x}+\hat{h_y}+\hat{h_z}\)
Schrödinger Equation
\([\hat{h_x}+\hat{h_y}+\hat{h_z}]\Psi(x, y, z) = E\Psi(x, y, z)\)
Try \(\Psi(x, y, z) = \Psi_x(x) \Psi_y(y) \Psi_z(z)\),
Where \(\hat{h_i}\) operates only on \(\Psi_i\),
and \(\hat{h_i}\Psi_i=E_i\Psi_i\) are the solutions of the 1-D problem.
\(\hat{h_x}\Psi(x, y, z) = \Psi_y\Psi_z\hat{h_x}\Psi_x=\Psi_y\Psi_zE_x\Psi_x=E_x\Psi_x\Psi_y\Psi_z=E_x\Psi(x, y, z)\).
(does not operate on y, z)
\(\hat{h_y}\Psi=E_y\Psi_x\Psi_y\Psi_z\)
\(\hat{h_z}\Psi=E_z\Psi_x\Psi_y\Psi_z\)
\(\hat{h_x}\Psi+\hat{h_y}\Psi+\hat{h_z}\Psi=\hat{H}\Psi=(E_x+E_y+E_z)\Psi\).
So we have shown that, if \(\hat{H}\) is separable into additive (commuting) terms, then \(\Psi\) can be written as a product of independent factors, and E will be a sum of separate subsystem energies. Convenient!
So, for the a, b, c box \[\Psi_{n_x} =\left(\frac{2}{a} \right)^\frac{1}{2} sin\frac{n_x \pi}{a}\]
\[E_{n_x} =(n_x)^2\frac{h^2}{8ma^2}\]
\[\int_{0}^{a} dx (\Psi_{n_x})^2=1\]
\[\Psi_{n_y} =\left(\frac{2}{b} \right)^\frac{1}{2} sin\frac{n_y \pi}{b}\]
normalized \[E_{n_y} =(n_y)^2\frac{h^2}{8mb^2}\]
\[\Psi_{n_z} =\left(\frac{2}{c} \right)^\frac{1}{2} sin\frac{n_z \pi}{c}\]
normalized \[E_{n_z} =(n_z)^2\frac{h^2}{8mc^2}\]
\[E_{n_x,n_y,x_z} = \dfrac{h^{2}}{8m}\left(\dfrac{n_{x}^{2}}{a^{2}} + \dfrac{n_{y}^{2}}{b^{2}} + \dfrac{n_{z}^{2}}{c^{2}}\right)\]
\[\Psi_{n_x,n_y,x_z} =\left(\frac{8}{abc} \right)^\frac{1}{2} sin\frac{n_x \pi}{z} sin\frac{n_y \pi}{b} sin\frac{n_z \pi}{c}\]
If each of the factors of \[\Psi_{n_x,n_y,x_z}\] is normalized, it’ s easy to show that
\[\int dx dy dz |\Psi_{n_x,n_y,x_z}|^2=1\]
because each of the integrations acts on only one separable factor.
This looks like a lot of algebra, but it really is an important, convenient, and frequently encountered simplification.
We use this separable form for \(\Psi\) and E all of the time, even when \(\hat{H}\)is not exactly separable (for example, a box with slightly rounded corners).
\[\hat{H} = \hat{H}^0 + \hat{H}^1\]
\(\hat{H}\)— a separable Hamiltonian that we use to define a complete set of "basis functions" and "zero-order energyies."
\(\hat{H}^1\) — a correction term that contains what we would like to leave out.
This is the basis for our intuition, names of things, and approximate energy level formulas.
\(\hat{H}^1\)contains small inter-sub-system coupling terms that are dealt with by perturbation
theory (Lectures #15, #16 and #19).
NEXT TIME
we are going to look at some properties of a particle in a box. Some of these properties are based on simple insights, while others are based on actually evaluating the necessary integrals.
\[<x>\]
\[<x^2>\]
"variance" \[{\sigma _x}^2=<x^2>-<x>\]
\[<p>\]
\[<x^2>\]
\[\sigma _{p_x}\]
\[{\sigma _x} \sigma _{p_x}\]
FWHM
Gaussian \[G(x-x_0, \sigma _x)\] (\(x_0\) is "center", \(\sigma _x\) is "width")
Lorentzian \[L(x-x_0, \sigma _x)\]
Minimum Uncertainty Wavepacket

