Skip to main content
Chemistry LibreTexts

13.S: Kinetic Methods (Summary)

  • Page ID
    70502
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Kinetic methods of analysis use the rate of a chemical or physical process to determine an analyte’s concentration. Three types of kinetic methods are discussed in this chapter: chemical kinetic methods, radiochemical methods, and flow injection methods.

    Chemical kinetic methods use the rate of a chemical reaction and either its integrated or differential rate law. For an integral method, we determine the concentration of analyte—or the concentration of a reactant or product stoichiometrically related to the analyte—at one or more points in time following the reaction’s initiation. The initial concentration of analyte is then determined using the integral form of the reaction’s rate law. Alternatively, we can measure the time required to effect a given change in concentration. In a differential kinetic method we measure the rate of the reaction at a time t, and use the differential form of the rate law to determine the analyte’s concentration.

    Chemical kinetic methods are particularly useful for reactions that are too slow for other analytical methods. For reactions with fast kinetics, automation allows for sampling rates of more than 100 samples/h. Another important application of chemical kinetic methods is the quantitative analysis of enzymes and their substrates, and the characterization of enzyme catalysis.

    Radiochemical methods of analysis take advantage of the decay of radioactive isotopes. A direct measurement of the rate at which a radioactive isotope decays may be used to determine its concentration in a sample. For an analyte that is not naturally radioactive, neutron activation often can be used to induce radioactivity. Isotope dilution, in which we spike a radioactively-labeled form of analyte into the sample, can be used as an internal standard for quantitative work.

    In flow injection analysis we inject the sample into a flowing carrier stream that often merges with additional streams of reagents. As the sample moves with the carrier stream it both reacts with the contents of the carrier stream and any additional reagent streams, and undergoes dispersion. The resulting fiagram of signal versus time bears some resemblance to a chromatogram. Unlike chromatography, however, flow injection analysis is not a separation technique. Because all components in a sample move with the carrier stream’s flow rate, it is possible to introduce a second sample before the first sample reaches the detector. As a result, flow injection analysis is ideally suited for the rapid throughput of samples.

    13.5.1 Key Terms

    alpha particle
    beta particle
    centrifugal analyzer
    competitive inhibitor
    curve-fitting method
    enzyme
    equilibrium method
    fiagram
    flow injection analysis
    gamma ray
    Geiger counter
    half-life
    inhibitor
    initial rate
    integrated rate law
    intermediate rate
    isotope
    isotope dilution
    kinetic method
    Lineweaver-Burk plot
    manifold
    Michaelis constant
    negatron
    neutron activation
    noncompetitive inhibitor
    one-point fixed-time integral method
    peristaltic pump
    positron
    quench
    rate
    rate constant
    rate law
    rate method
    scintillation counter
    steady-state approximation
    stopped-flow analyzer
    substrate
    tracer
    two-point fixed-time integral method
    uncompetitive inhibitor
    variable time integral method

    References

    1. Method 4500-NO2 B in Standard Methods for the Analysis of Waters and Wastewaters, American Public Health Association: Washington, DC, 20th Ed., 1998.
    2. Karayannis, M. I.; Piperaki, E. A.; Maniadaki, M. M. Anal. Lett. 1986, 19, 13–23.
    3. Pardue, H. L. Anal. Chim. Acta 1989, 216, 69–107.
    4. Mottola, H. A. Anal. Chim. Acta 1993, 280, 279–287.
    5. (a) Crouch, S. R.; Malmstadt, H. V. Anal. Chem. 1967, 39, 1084–1089; (b) Crouch, S. R.; Malmstadt, H. V. Anal. Chem. 1967, 39, 1090–1093; (c) Malmstadt, H. V.; Cordos, E. A.; Delaney, C. J. Anal. Chem. 1972, 44(12), 26A–41A.
    6. Javier, A. C.; Crouch, S. R.; Malmstadt, H. V. Anal. Chem. 1969, 41, 239–243.
    7. Mark, H. B.; Rechnitz, G. A. Kinetics in Analytical Chemistry, Interscience: New York, 1968.
    8. Sandell, E. B.; Kolthoff, I. M. J. Am. Chem. Soc. 1934, 56, 1426.
    9. Darwish, I. A.; Sultan, M. A.; Al-Arfaj, H. A. Talanta 2009, 78, 1383–1388.
    10. Guilbault, G. G. Handbook of Enzymatic Methods of Analysis, Marcel Dekker: New York, 1976.
    11. Ioannou. P. C.; Piperaki, E. A. Clin. Chem. 1986, 32, 1481–1483.
    12. Cruces Blanco, C.; Garcia Sanchez, F. Int. J. Environ. Anal. Chem. 1990, 38, 513–523.
    13. (a) Northup, D. B. J. Chem. Educ. 1998, 75, 1153–1157; (b) Zubay, G. Biochemistry, Macmillan Publishing Co.: New York, 2nd Ed., p 269.
    14. (a) Atkinson, M. R.; Jackson, J. F.; Morton, R. K. Biochem. J. 1961, 80, 318–323; (b) Wilkinson, G. N. Biochem. J. 1961, 80, 324–332.
    15. Pauch, J. B.; Margerum, D. W. Anal. Chem. 1969, 41, 226–232.
    16. (a) Holler, F. J.; Calhoun, R. K.; MClanahan, S. F. Anal. Chem. 1982, 54, 755–761; (b) Wentzel, P. D.; Crouch, S. R. Anal. Chem. 1986, 58, 2851–2855; (c) Wentzel, P. D.; Crouch, S. R. Anal. Chem. 1986, 58, 2855–2858.
    17. (a) Ruzicka, J.; Hansen, E. H. Anal. Chim. Acta 1975, 78, 145–157; (b) Stewart, K. K.; Beecher, G. R.; Hare, P. E. Anal. Biochem. 1976, 70, 167–173; (c) Valcárcel, M.; Luque de Castro, M. D. Flow Injection Analysis: Principles and Applications, Ellis Horwood: Chichester, England, 1987.
    18. Hansen, E. H.; Ruzicka, J. J. Chem. Educ. 1979, 56, 677–680.
    19. Korenaga, T.; Ikatsu, H. Anal. Chim. Acta 1982, 141, 301–309.
    20. Andrew, K. N.; Blundell, N. J.; Price, D.; Worsfold, P. J. Anal. Chem. 1994, 66, 916A–922A.
    21. Ramsing, A. U.; Ruzicka, J.; Hansen, E. H. Anal. Chim. Acta 1981, 129, 1–17.
    22. Malmstadt, H. V.; Pardue, H. L. Anal. Chem. 1961 33, 1040–1047.
    23. Deming, S. N.; Pardue, H. L. Anal. Chem. 1971, 43, 192–200.
    24. Lazaro, F.; Luque de Castro, M. D.; Valcárcel, M. Analyst, 1984, 109, 333–337.
    25. Ramsing, A. U.; Ruzicka, J.; Hansen, E. H. Anal. Chim. Acta 1981, 129, 1–17.
    26. Milardović, S.; Kruhak, I.; Iveković, D.; Rumenjak, V.; Tkalčec, M.; Grabarić, B. S. Anal. Chim. Acta 1997, 350, 91–96.
    27. Fernández-Abedul, M; Costa-García, A. Anal. Chim. Acta 1996, 328, 67–71.
    28. Holman, D. A.; Christian, G. D.; Ruzicka, J. Anal. Chem. 1997, 69, 1763–1765.

    This page titled 13.S: Kinetic Methods (Summary) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.

    • Was this article helpful?