Skip to main content
Chemistry LibreTexts

6.S: Equilibrium Chemistry (Summary)

  • Page ID
    70446
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Analytical chemistry is more than a collection of techniques; it is the application of chemistry to the analysis of samples. As we will see in later chapters, almost all analytical methods use chemical reactivity to accomplish one or more of the following: dissolve the sample, separate analytes from interferents, transform the analyte to a more useful form, or provide a signal. Equilibrium chemistry and thermodynamics provide us with a means for predicting which reactions are likely to be favorable.

    The most important types of reactions are precipitation reactions, acid–base reactions, metal-ligand complexation reactions, and redox reactions. In a precipitation reaction two or more soluble species combine to produce an insoluble product called a precipitate, which we characterize using a solubility product.

    An acid–base reaction occurs when an acid donates a proton to a base. The reaction’s equilibrium position is described using either an acid dissociation constant, Ka, or a base dissociation constant, Kb. The product of Ka and Kb for an acid and its conjugate base is the dissociation constant for water, Kw.

    When a ligand donates one or more pairs of electron to a metal ion, the result is a metal–ligand complex. Two types of equilibrium constants are used to describe metal–ligand complexation—stepwise formation constants and overall formation constants. There are two stepwise formation constants for the metal–ligand complex ML2, each describing the addition of one ligand; thus, K1 represents the addition of the first ligand to M, and K2 represents the addition of the second ligand to ML. Alternatively, we can use a cumulative, or overall formation constant, β2, for the metal–ligand complex ML2, in which both ligands are added to M.

    In a redox reaction, one of the reactants undergoes oxidation and another reactant undergoes reduction. Instead of using an equilibrium constants to characterize a redox reactions, we use the potential, positive values of which indicate a favorable reaction. The Nernst equation relates this potential to the concentrations of reactants and products.

    Le Châtelier’s principle provides a means for predicting how a system at equilibrium responds to a change in conditions. If we apply a stress to a system at equilibrium—by adding a reactant or product, by adding a reagent that reacts with one of the reactants or products, or by changing the volume—the system responds by moving in the direction that relieves the stress.

    You should be able to describe a system at equilibrium both qualitatively and quantitatively. You can develop a rigorous solution to an equilibrium problem by combining equilibrium constant expressions with appropriate mass balance and charge balance equations. Using this systematic approach, you can solve some quite complicated equilibrium problems. If a less rigorous answer is acceptable, then a ladder diagram may help you estimate the equilibrium system’s composition.

    Solutions containing relatively similar amounts of a weak acid and its conjugate base experience only a small change in pH upon adding a small amount of a strong acid or a strong base. We call these solutions buffers. A buffer can also be formed using a metal and its metal–ligand complex, or an oxidizing agent and its conjugate reducing agent. Both the systematic approach to solving equilibrium problems and ladder diagrams are useful tools for characterizing buffers.

    A quantitative solution to an equilibrium problem may give an answer that does not agree with experimental results if we do not consider the effect of ionic strength. The true, thermodynamic equilibrium constant is a function of activities, a, not concentrations. A species' activity is related to its molar concentration by an activity coefficient, γ. Activity coefficients can be calculated using the extended Debye-Hückel equation, making possible a more rigorous treatment of equilibria.

    6.12.1 Key Terms

    acid
    acid dissociation constant
    activity
    activity coefficient
    amphiprotic
    base
    base dissociation constant
    buffer
    buffer capacity
    charge balance equation
    common ion effect
    cumulative formation constant
    dissociation constant
    enthalpy entropy
    equilibrium

    equilibrium constant
    extended Debye‑Hückel equation
    formation constant
    Gibb’s free energy
    half‑reaction
    Henderson–Hasselbalch equation
    ionic strength
    ladder diagram
    Le Châtelier’s principle
    ligand
    mass balance equation
    metal–ligand complex
    method of successive approximations
    monoprotic
    Nernst equation

    oxidation
    oxidizing agent
    pH scale
    polyprotic potential
    precipitate
    redox reaction
    reducing agent
    reduction
    standard‑state
    standard potential
    steady state
    stepwise formation constant
    solubility product

    References

    1. Quilez, J. Chem. Educ. Res. Pract. 2004, 5, 69–87 (http://www.uoi.gr/cerp).
    2. lthough not specifically on the topic of ladder diagrams as developed in this section, the following sources provide appropriate background information: (a) Runo, J. R.; Peters, D. G. J. Chem. Educ. 1993, 70, 708–713; (b) Vale, J.; Fernández-Pereira, C.; Alcalde, M. J. Chem. Educ. 1993, 70, 790–795; (c) Fernández-Pereira, C.; Vale, J. Chem. Educator 1996, 6, 1–18; (d) Fernández-Pereira, C.; Vale, J.; Alcalde, M. Chem. Educator 2003, 8, 15–21; (e) Fernández-Pereira, C.; Alcalde, M.; Villegas, R.; Vale, J. J. Chem. Educ. 2007, 84, 520–525.
    3. See, for example, (a) Bower, V. E.; Bates, R. G. J. Res. Natl. Bur. Stand. (U. S.) 1955, 55, 197–200; (b) Bates, R. G. Ann. N. Y. Acad. Sci. 1961, 92, 341–356; (c) Bates, R. G. Determination of pH, 2nd ed.; Wiley-Interscience: New York, 1973.
    4. (a) Lambert, W. J. J. Chem. Educ. 1990, 67, 150–153; (b) http://www.bioinformatics.org/JaMBW/5/4/index.html.
    5. Lister, M. W.; Rivington, D. E. Can. J. Chem. 1995, 33, 1572–1590.
    6. Davies, C. W. Ion Association, Butterworth: London, 1962.

    This page titled 6.S: Equilibrium Chemistry (Summary) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by David Harvey.

    • Was this article helpful?