Skip to main content
Chemistry LibreTexts

15.7: Appendix

  • Page ID
    372795
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Triplets. A triplet wavefunction is defined by the Slater determinate: \({\mathit{\Psi}}^3\left(1,2\right)=\)

    \[det\frac{1}{\sqrt{2}}\left|{\mathit{\Psi}}_1\left(1\right)\alpha \left(1\right)\ {\mathit{\Psi}}_1\left(2\right)\alpha \left(2\right)\ {\mathit{\Psi}}_2\left(1\right)\alpha \left(1\right)\ {\mathit{\Psi}}_2\left(2\right)\alpha \left(2\right)right|=\frac{1}{\sqrt{2}}{\mathit{\Psi}}_1\left(1\right)\alpha \left(1\right){\mathit{\Psi}}_2\left(2\right)\alpha \left(2\right)-\frac{1}{\sqrt{2}}{\mathit{\Psi}}_2\left(1\right)\alpha \left(1\right){\mathit{\Psi}}_1\left(2\right)\alpha \left(2\right) \nonumber \]

    We now apply this to the electron-electron repulsion operator \(\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}\) as follows:

    \[\int{}

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Under_Construction/Free_Energy_(Snee)/15:_The_Hydrogen_Atom/15.07:_Appendix), /content/body/p[4]/span, line 1, column 1
    
    ^3\left(1,2\right)\cdot \partial \tau = \nonumber \]

    \[\int{}\left\{{\psi }^*_1\left(1\right){\alpha }^*\left(1\right){\psi }^*_2\left(2\right){\alpha }^*\left(2\right)-{\psi }^*_2\left(1\right){\alpha }^*\left(1\right){\psi }^*_1\left(2\right){\alpha }^*\left(2\right)\right\}\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}\left\{{\mathit{\Psi}}_1\left(1\right)\alpha \left(1\right){\mathit{\Psi}}_2\left(2\right)\alpha \left(2\right)-{\mathit{\Psi}}_2\left(1\right)\alpha \left(1\right){\mathit{\Psi}}_1\left(2\right)\alpha \left(2\right)\right\}\cdot \partial \tau \nonumber \]

    Next the expression is FOIL’ed out and the spin wavefunctions are factored out:

    \[\frac{1}{2}\int{}{\psi }^*_1\left(1\right){\mathit{\Psi}}_1\left(1\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Under_Construction/Free_Energy_(Snee)/15:_The_Hydrogen_Atom/15.07:_Appendix), /content/body/p[8]/span, line 1, column 1
    
    _2\left(2\right)\cdot \partial \tau \int{}{\alpha }^*\left(1\right)\alpha \left(1\right)\int{}{\alpha }^*\left(2\right)\alpha \left(2\right)+\frac{1}{2}\int{}{\mathit{\Psi}}^*_1\left(2\right){\mathit{\Psi}}_1\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}^*_2\left(1\right){\mathit{\Psi}}_2\left(1\right)\cdot \partial \tau \int{}{\alpha }^*\left(1\right)\alpha \left(1\right)\int{}{\alpha }^*\left(2\right)\alpha \left(2\right)-\frac{1}{2}\int{}{\mathit{\Psi}}^*_1\left(1\right){\mathit{\Psi}}_1\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}^*_2\left(2\right){\mathit{\Psi}}_2\left(1\right)\cdot \partial \tau \int{}{\alpha }^*\left(1\right)\alpha \left(1\right)\int{}{\alpha }^*\left(2\right)\alpha \left(2\right)-\frac{1}{2}\int{}{\mathit{\Psi}}^*_1\left(2\right){\mathit{\Psi}}_1\left(1\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}^*_2\left(1\right){\mathit{\Psi}}_2\left(2\right)\cdot \partial \tau \int{}{\alpha }^*\left(1\right)\alpha \left(1\right)\int{}{\alpha }^*\left(2\right)\alpha \left(2\right) \nonumber \]

    Since \(\int{}{\alpha }^*\alpha =1\) and \({\mathit{\Psi}}^*_1\left(1\right){\mathit{\Psi}}_1\left(1\right)={\left|{\mathit{\Psi}}_1\left(1\right)\right|}^2\) etc., the above can be factored into:

    \[\frac{1}{2}\left(\int{}{\left|{\mathit{\Psi}}_1\left(1\right)\right|}^2\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\left|{\mathit{\Psi}}_2\left(2\right)\right|}^2\cdot \partial \tau +\int{}{\left|{\mathit{\Psi}}_1\left(2\right)\right|}^2\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\left|{\mathit{\Psi}}_2\left(1\right)\right|}^2\cdot \partial \tau \right) \nonumber \]

    \[-\frac{1}{2}\left(\int{}{\mathit{\Psi}}^*_1\left(1\right){\mathit{\Psi}}_1\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}^*_2\left(2\right){\mathit{\Psi}}_2\left(1\right)\cdot \partial \tau +\int{}{\mathit{\Psi}}^*_1\left(2\right){\mathit{\Psi}}_1\left(1\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}^*_2\left(1\right){\mathit{\Psi}}_2\left(2\right)\cdot \partial \tau \right) \nonumber \]

    The terms in parentheses are equal because the labels “1” and “2” are arbitrary, and the integral results are the same. The result is the Coulomb integral minus the exchange integral:

    \[\int{}

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Under_Construction/Free_Energy_(Snee)/15:_The_Hydrogen_Atom/15.07:_Appendix), /content/body/p[14]/span, line 1, column 1
    
    ^3\left(1,2\right)\cdot \partial \tau = \nonumber \]

    \[\int{}{\left|{\mathit{\Psi}}_1\left(1\right)\right|}^2\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\left|{\mathit{\Psi}}_2\left(2\right)\right|}^2\cdot \partial \tau -\int{}{\mathit{\Psi}}^*_1\left(1\right){\mathit{\Psi}}_1\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}^*_2\left(2\right){\mathit{\Psi}}_2\left(1\right)\cdot \partial \tau \nonumber \]

    Singlets: A singlet wavefunction is defined by two Slater determinates:

    \[det\frac{1}{2}\left(\left|{\mathit{\Psi}}_1\left(1\right)\alpha \left(1\right)\ {\mathit{\Psi}}_1\left(2\right)\alpha \left(2\right)\ {\mathit{\Psi}}_2\left(1\right)\beta \left(1\right)\ {\mathit{\Psi}}_2\left(2\right)\beta \left(2\right)right|-\left|{\mathit{\Psi}}_1\left(1\right)\beta \left(1\right)\ {\mathit{\Psi}}_1\left(2\right)\beta \left(2\right)\ {\mathit{\Psi}}_2\left(1\right)\alpha \left(1\right)\ {\mathit{\Psi}}_2\left(2\right)\alpha \left(2\right)right|\right) \nonumber \]

    \[={\frac{1}{2}\mathit{\Psi}}_1\left(1\right)\alpha \left(1\right){\mathit{\Psi}}_2\left(2\right)\beta \left(2\right)-\frac{1}{2}{\mathit{\Psi}}_2\left(1\right)\beta \left(1\right){\mathit{\Psi}}_1\left(2\right)\alpha \left(2\right)-\frac{1}{2}{\mathit{\Psi}}_1\left(1\right)\beta \left(1\right){\mathit{\Psi}}_2\left(2\right)\alpha \left(2\right)+\frac{1}{2}{\mathit{\Psi}}_2\left(1\right)\alpha \left(1\right){\mathit{\Psi}}_1\left(2\right)\beta \left(2\right) \nonumber \]

    We now apply this to the electron-electron repulsion operator \(\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}\) as:

    \[\int{}

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Under_Construction/Free_Energy_(Snee)/15:_The_Hydrogen_Atom/15.07:_Appendix), /content/body/p[22]/span, line 1, column 1
    
    ^1\left(1,2\right)\cdot \partial \tau \nonumber \]

    The expression is FOIL’ed and the spin wavefunctions are factored out on the following page. Since \(\int{}{\alpha }^*\alpha =1\), \(\int{}{\alpha }^*\beta =\int{}{\beta }^*\alpha =0\) and \({\psi }^*_1\left(1\right){\mathit{\Psi}}_1\left(1\right)={\left|{\mathit{\Psi}}_1\left(1\right)\right|}^2\) etc., half the terms can be removed, and the remainder factored into:

    \[\frac{1}{2}\left(\int{}{\left|{\mathit{\Psi}}_1\left(1\right)\right|}^2\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\left|{\mathit{\Psi}}_2\left(2\right)\right|}^2\cdot \partial \tau +\int{}{\left|{\mathit{\Psi}}_1\left(2\right)\right|}^2\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\left|{\mathit{\Psi}}_2\left(1\right)\right|}^2\cdot \partial \tau \right) \nonumber \]

    \[+\frac{1}{2}\left(\int{}{\psi }^*_1\left(1\right){\mathit{\Psi}}_1\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\psi }^*_2\left(2\right){\mathit{\Psi}}_2\left(1\right)\cdot \partial \tau +\int{}{\psi }^*_1\left(2\right){\mathit{\Psi}}_1\left(1\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\psi }^*_2\left(1\right){\mathit{\Psi}}_2\left(2\right)\cdot \partial \tau \right) \nonumber \]

    The terms in parentheses are equal because the labels “1” and “2” are arbitrary. Thus, we have the Coulomb integral plus the exchange integral:

    \[\int{}

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Under_Construction/Free_Energy_(Snee)/15:_The_Hydrogen_Atom/15.07:_Appendix), /content/body/p[28]/span, line 1, column 1
    
    ^1\left(1,2\right)\cdot \partial \tau = \nonumber \]

    \[\int{}{\left|{\mathit{\Psi}}_1\left(1\right)\right|}^2\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\left|{\mathit{\Psi}}_2\left(2\right)\right|}^2\cdot \partial \tau +\int{}{\mathit{\Psi}}^*_1\left(1\right){\mathit{\Psi}}_1\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}^*_2\left(2\right){\mathit{\Psi}}_2\left(1\right)\cdot \partial \tau \nonumber \]

    which proves that the paramagnetic triplet state is lower in energy than the singlet.

    \[\frac{1}{4}\int{}{\mathit{\Psi}}^*_1\left(1\right){\mathit{\Psi}}^*_2\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_1\left(1\right){\mathit{\Psi}}_2\left(2\right)\cdot \partial \tau \int{}{\alpha }^*\left(1\right)\alpha \left(1\right)\int{}{\beta }^*\left(2\right)\beta \left(2\right)-\frac{1}{4}\int{}{\mathit{\Psi}}^*_1\left(1\right){\mathit{\Psi}}^*_2\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_2\left(1\right){\mathit{\Psi}}_1\left(2\right)\cdot \partial \tau \int{}{\alpha }^*\left(1\right)\beta \left(1\right)\int{}{\beta }^*\left(2\right)\alpha \left(2\right)-\frac{1}{4}\int{}{\mathit{\Psi}}^*_1\left(1\right){\mathit{\Psi}}^*_2\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_1\left(1\right){\mathit{\Psi}}_2\left(2\right)\cdot \partial \tau \int{}{\alpha }^*\left(1\right)\beta \left(1\right)\int{}{\beta }^*\left(2\right)\alpha \left(2\right)+\frac{1}{4}\int{}{\mathit{\Psi}}^*_1\left(1\right){\mathit{\Psi}}^*_2\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_2\left(1\right){\mathit{\Psi}}_1\left(2\right)\cdot \partial \tau \int{}{\alpha }^*\left(1\right)\alpha \left(1\right)\int{}{\beta }^*\left(2\right)\beta \left(2\right)-\frac{1}{4}\int{}{\mathit{\Psi}}^*_2\left(1\right){\mathit{\Psi}}^*_1\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_1\left(1\right){\mathit{\Psi}}_2\left(2\right)\cdot \partial \tau \int{}{\beta }^*\left(1\right)\alpha \left(1\right)\int{}{\alpha }^*\left(2\right)\beta \left(2\right)+\frac{1}{4}\int{}{\mathit{\Psi}}^*_2\left(1\right){\mathit{\Psi}}^*_1\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_2\left(1\right){\mathit{\Psi}}_1\left(2\right)\cdot \partial \tau \int{}{\beta }^*\left(1\right)\beta \left(1\right)\int{}{\alpha }^*\left(2\right)\alpha \left(2\right)+\frac{1}{4}\int{}{\mathit{\Psi}}^*_2\left(1\right){\mathit{\Psi}}^*_1\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_1\left(1\right){\mathit{\Psi}}_2\left(2\right)\cdot \partial \tau \int{}{\beta }^*\left(1\right)\beta \left(1\right)\int{}{\alpha }^*\left(2\right)\alpha \left(2\right)-\frac{1}{4}\int{}{\mathit{\Psi}}^*_2\left(1\right){\mathit{\Psi}}^*_1\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_2\left(1\right){\mathit{\Psi}}_1\left(2\right)\cdot \partial \tau \int{}{\beta }^*\left(1\right)\alpha \left(1\right)\int{}{\alpha }^*\left(2\right)\beta \left(2\right)-\frac{1}{4}\int{}{\mathit{\Psi}}^*_1\left(1\right){\mathit{\Psi}}^*_2\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_1\left(1\right){\mathit{\Psi}}_2\left(2\right)\cdot \partial \tau \int{}{\beta }^*\left(1\right)\alpha \left(1\right)\int{}{\alpha }^*\left(2\right)\beta \left(2\right)+\frac{1}{4}\int{}{\mathit{\Psi}}^*_1\left(1\right){\mathit{\Psi}}^*_2\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_2\left(1\right){\mathit{\Psi}}_1\left(2\right)\cdot \partial \tau \int{}{\beta }^*\left(1\right)\beta \left(1\right)\int{}{\alpha }^*\left(2\right)\alpha \left(2\right)+\frac{1}{4}\int{}{\mathit{\Psi}}^*_1\left(1\right){\mathit{\Psi}}^*_2\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_1\left(1\right){\mathit{\Psi}}_2\left(2\right)\cdot \partial \tau \int{}{\beta }^*\left(1\right)\beta \left(1\right)\int{}{\alpha }^*\left(2\right)\alpha \left(2\right)-\frac{1}{4}\int{}{\mathit{\Psi}}^*_1\left(1\right){\mathit{\Psi}}^*_2\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_2\left(1\right){\mathit{\Psi}}_1\left(2\right)\cdot \partial \tau \int{}{\beta }^*\left(1\right)\alpha \left(1\right)\int{}{\alpha }^*\left(2\right)\beta \left(2\right)+\frac{1}{4}\int{}{\mathit{\Psi}}^*_2\left(1\right){\mathit{\Psi}}^*_1\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_1\left(1\right){\mathit{\Psi}}_2\left(2\right)\cdot \partial \tau \int{}{\alpha }^*\left(1\right)\alpha \left(1\right)\int{}{\beta }^*\left(2\right)\beta \left(2\right)-\frac{1}{4}\int{}{\mathit{\Psi}}^*_2\left(1\right){\mathit{\Psi}}^*_1\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_2\left(1\right){\mathit{\Psi}}_1\left(2\right)\cdot \partial \tau \int{}{\alpha }^*\left(1\right)\beta \left(1\right)\int{}{\beta }^*\left(2\right)\alpha \left(2\right)-\frac{1}{4}\int{}{\mathit{\Psi}}^*_2\left(1\right){\mathit{\Psi}}^*_1\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_1\left(1\right){\mathit{\Psi}}_2\left(2\right)\cdot \partial \tau \int{}{\alpha }^*\left(1\right)\beta \left(1\right)\int{}{\beta }^*\left(2\right)\alpha \left(2\right)+\frac{1}{4}\int{}{\mathit{\Psi}}^*_2\left(1\right){\mathit{\Psi}}^*_1\left(2\right)\frac{e^2}{4\pi {\varepsilon }_0\left|r_1-r_2\right|}{\mathit{\Psi}}_2\left(1\right){\mathit{\Psi}}_1\left(2\right)\cdot \partial \tau \int{}{\alpha }^*\left(1\right)\alpha \left(1\right)\int{}{\beta }^*\left(2\right)\beta \left(2\right) \nonumber \]


    This page titled 15.7: Appendix is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Preston Snee.

    • Was this article helpful?