10.5: Appendix - Jacobians
( \newcommand{\kernel}{\mathrm{null}\,}\)
Appendix: Jacobians
A.1. 3D to 1D
A Jacobian is a mathematical entity used to switch partials inside an integral. For the case of velocity in three dimensions being converted into spherical coordinates, where v is the net velocity and akin to a sphere’s radius:
\[\partial v_x\cdot \partial v_y\cdot \partial v_z=\left|\frac{\partial (v_x,v_y,v_z)}{\partial (v,\theta ,\phi )}\right|\cdot \partial v\cdot \partial \phi \cdot \partial \theta =v^2\cdot
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[2]/span, line 1, column 1
To evaluate the above, we should have some idea how to convert vx vy vz into spherical coordinates to begin with. It’s just a lesson in geometry:
\[v_x=v\cdot
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[4]/span[1], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[4]/span[2], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[4]/span[3], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[4]/span[4], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[4]/span[5], line 1, column 1
where v=√v2x+v2y+v2z. The Jacobian |∂(vx,vy,vz)∂(v,θ,ϕ)| is the absolute values of the determinant of the following matrix:
\[\left|
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[6]/span, line 1, column 1
In our coordinate system the absolute value of the determinant of the matrix is:
\[\left|
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[1], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[2], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[3], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[4], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[5], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[6], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[7], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[8], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[9], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[10], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[11], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[12], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[13], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[14], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[15], line 1, column 1
\[=\left|-v^2(phi )(theta )-v^2
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[10]/span[1], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[10]/span[2], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[10]/span[3], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[10]/span[4], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[10]/span[5], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[10]/span[6], line 1, column 1
Since we take the absolute value of this result (the negative sign goes away), the final answer is: \(\partial v_x\cdot \partial v_y\cdot \partial v_z=v^2\cdot
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[11]/span/span, line 1, column 1
When we apply the Jacobian to the Maxwell-Boltzmann formula we see that (bold emphasis added):
\[{\left(\frac{m}{2\cdot \pi \cdot k_B\cdot T}\right)}^{\frac{3}{2}}\cdot e^{\frac{-m\cdot v^2}{2\cdot k_B\cdot T}}\cdot \partial v_x\cdot \partial v_y\cdot \partial v_z={\left(\frac{m}{2\cdot \pi \cdot k_B\cdot T}\right)}^{\frac{3}{2}}\cdot e^{\frac{-m\cdot v^2}{2\cdot k_B\cdot T}}\cdot v^2\cdot
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[13]/span, line 1, column 1
Now we can integrate out the angles:
\[{\left(\frac{m}{2\cdot \pi \cdot k_B\cdot T}\right)}^{\frac{3}{2}}\cdot e^{\frac{-m\cdot v^2}{2\cdot k_B\cdot T}}\cdot v^2\cdot
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[15]/span[1], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[15]/span[2], line 1, column 1
which leaves us with just a constant:
\[\int^{\pi }_0{}
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[17]/span[1], line 1, column 1
Callstack:
at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[17]/span[2], line 1, column 1
leaving us with:
4π⋅v2⋅(m2⋅π⋅kB⋅T)32⋅e−m⋅v22⋅kB⋅T⋅∂v
This is the velocity form of the Maxwell-Boltzmann equation.
A.2.
∂va⋅∂vb→∂G⋅∂Vrel: The following Jacobian was used in the calculation of relative velocity:
∂va⋅∂vb=|∂(va,vb)∂(G,Vrel)|⋅∂G⋅∂Vrel
The determinant is:
\boldsymbol{\left|\frac{\partial (v_a,v_b)}{\partial (G,V_{rel})}\right|=\left|det\left[\frac{\partial v_a}{\partial V_{rel}}frac{\partial v_a}{\partial G}frac{\partial v_b}{\partial V_{rel}}frac{\partial v_b}{\partial G}right]\right| \nonumber}
Given that va=G+mbma+mbVrel and vb=G−mama+mbVrel, we can fill out the matrix:
\boldsymbol{\left|det\left[\frac{m_b}{m_a+m_b}\ 1\ -\frac{m_a}{m_a+m_b}\ 1right]\right|=\frac{m_b}{m_a+m_b}+\frac{m_a}{m_a+m_b}=\frac{m_a+m_b}{m_a+m_b}=1 \nonumber}
Done!