Loading [MathJax]/jax/output/HTML-CSS/jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

10.5: Appendix - Jacobians

( \newcommand{\kernel}{\mathrm{null}\,}\)

Appendix: Jacobians

A.1. 3D to 1D

A Jacobian is a mathematical entity used to switch partials inside an integral. For the case of velocity in three dimensions being converted into spherical coordinates, where v is the net velocity and akin to a sphere’s radius:

\[\partial v_x\cdot \partial v_y\cdot \partial v_z=\left|\frac{\partial (v_x,v_y,v_z)}{\partial (v,\theta ,\phi )}\right|\cdot \partial v\cdot \partial \phi \cdot \partial \theta =v^2\cdot

UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[2]/span, line 1, column 1
sin\ (phi )\cdot \partial v\cdot \partial \phi \cdot \partial \theta \nonumber \]

To evaluate the above, we should have some idea how to convert vx vy vz into spherical coordinates to begin with. It’s just a lesson in geometry:

\[v_x=v\cdot

UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[4]/span[1], line 1, column 1
sin\ (phi )\cdot
UndefinedNameError: reference to undefined name 'cos' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[4]/span[2], line 1, column 1
cos\ (theta )v_y=v\cdot
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[4]/span[3], line 1, column 1
sin\ (phi )\cdot
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[4]/span[4], line 1, column 1
sin\ (theta )v_z=v\cdot
UndefinedNameError: reference to undefined name 'cos' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[4]/span[5], line 1, column 1
cos\ (phi ) \nonumber \]

where v=v2x+v2y+v2z. The Jacobian |(vx,vy,vz)(v,θ,ϕ)| is the absolute values of the determinant of the following matrix:

\[\left|

UndefinedNameError: reference to undefined name 'det' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[6]/span, line 1, column 1
detleft[\frac{∂v_x}{\partial v}frac{∂v_x}{\partial \theta }frac{∂v_x}{\partial \varphi }frac{∂v_y}{\partial v}frac{∂v_y}{\partial \theta }frac{∂v_y}{\partial \varphi }frac{∂v_z}{\partial v}frac{∂v_z}{\partial \theta }frac{∂v_z}{\partial \varphi }right]right| \nonumber \]

In our coordinate system the absolute value of the determinant of the matrix is:

\[\left|

UndefinedNameError: reference to undefined name 'det' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[1], line 1, column 1
detleft[
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[2], line 1, column 1
sin\ (phi )
UndefinedNameError: reference to undefined name 'cos' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[3], line 1, column 1
cos\ (theta )\ -v
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[4], line 1, column 1
sin\ (phi )
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[5], line 1, column 1
sin\ (theta )\ v
UndefinedNameError: reference to undefined name 'cos' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[6], line 1, column 1
cos\ (phi )
UndefinedNameError: reference to undefined name 'cos' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[7], line 1, column 1
cos\ (theta )\
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[8], line 1, column 1
sin\ (phi )
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[9], line 1, column 1
sin\ (theta )\ v
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[10], line 1, column 1
sin\ (phi )
UndefinedNameError: reference to undefined name 'cos' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[11], line 1, column 1
cos\ (theta )\ v
UndefinedNameError: reference to undefined name 'cos' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[12], line 1, column 1
cos\ (phi )
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[13], line 1, column 1
sin\ (theta )\
UndefinedNameError: reference to undefined name 'cos' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[14], line 1, column 1
cos\ (phi )\ 0\ -v
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[8]/span[15], line 1, column 1
sin\ (phi )right]right| \nonumber \]

\[=\left|-v^2(phi )(theta )-v^2

UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[10]/span[1], line 1, column 1
sin\ (phi )(phi )(theta )+0-v^2(phi )(theta )-0-v^2
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[10]/span[2], line 1, column 1
sin\ (phi )(phi )(theta )\right|=\left|-v^2(phi )((theta )+(theta ))-v^2
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[10]/span[3], line 1, column 1
sin\ (phi )(phi )((theta )+(theta ))\right|=\left|-v^2(phi )-v^2
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[10]/span[4], line 1, column 1
sin\ (phi )(phi )\right|=\left|-v^2
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[10]/span[5], line 1, column 1
sin\ (phi )((phi )+(phi ))\right|=\left|-v^2
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[10]/span[6], line 1, column 1
sin\ (phi )\right| \nonumber \]

Since we take the absolute value of this result (the negative sign goes away), the final answer is: \(\partial v_x\cdot \partial v_y\cdot \partial v_z=v^2\cdot

UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[11]/span/span, line 1, column 1
sin\ (phi )\cdot \partial v\cdot \partial \phi \cdot \partial \theta\)

When we apply the Jacobian to the Maxwell-Boltzmann formula we see that (bold emphasis added):

\[{\left(\frac{m}{2\cdot \pi \cdot k_B\cdot T}\right)}^{\frac{3}{2}}\cdot e^{\frac{-m\cdot v^2}{2\cdot k_B\cdot T}}\cdot \partial v_x\cdot \partial v_y\cdot \partial v_z={\left(\frac{m}{2\cdot \pi \cdot k_B\cdot T}\right)}^{\frac{3}{2}}\cdot e^{\frac{-m\cdot v^2}{2\cdot k_B\cdot T}}\cdot v^2\cdot

UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[13]/span, line 1, column 1
sin\ (phi )\cdot \partial v\cdot \partial \phi \cdot \partial \theta \nonumber \]

Now we can integrate out the angles:

\[{\left(\frac{m}{2\cdot \pi \cdot k_B\cdot T}\right)}^{\frac{3}{2}}\cdot e^{\frac{-m\cdot v^2}{2\cdot k_B\cdot T}}\cdot v^2\cdot

UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[15]/span[1], line 1, column 1
sin\ (phi )\cdot \partial v\cdot \int^{2\pi }_0{}
UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[15]/span[2], line 1, column 1
sin\ (phi )\cdot \partial \phi \cdot \int^{\pi }_0{}\partial \theta \nonumber \]

which leaves us with just a constant:

\[\int^{\pi }_0{}

UndefinedNameError: reference to undefined name 'sin' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[17]/span[1], line 1, column 1
sin\ (phi )\cdot \partial \phi \cdot \int^{2\pi }_0{}\partial \theta ={-
UndefinedNameError: reference to undefined name 'cos' (click for details)
Callstack:
    at (Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Free_Energy_1e_(Snee)/10:_The_Kinetic_Theory_of_Gas/10.05:_Appendix), /content/body/div[2]/p[17]/span[2], line 1, column 1
cos\ (phi )]}^{\pi }_0\cdot 2\pi =4\pi \nonumber \]

leaving us with:

4πv2(m2πkBT)32emv22kBTv

This is the velocity form of the Maxwell-Boltzmann equation.

A.2.

vavbGVrel: The following Jacobian was used in the calculation of relative velocity:

vavb=|(va,vb)(G,Vrel)|GVrel

The determinant is:

\boldsymbol{\left|\frac{\partial (v_a,v_b)}{\partial (G,V_{rel})}\right|=\left|det\left[\frac{\partial v_a}{\partial V_{rel}}frac{\partial v_a}{\partial G}frac{\partial v_b}{\partial V_{rel}}frac{\partial v_b}{\partial G}right]\right| \nonumber}

Given that va=G+mbma+mbVrel and vb=Gmama+mbVrel, we can fill out the matrix:

\boldsymbol{\left|det\left[\frac{m_b}{m_a+m_b}\ 1\ -\frac{m_a}{m_a+m_b}\ 1right]\right|=\frac{m_b}{m_a+m_b}+\frac{m_a}{m_a+m_b}=\frac{m_a+m_b}{m_a+m_b}=1 \nonumber}

Done!


This page titled 10.5: Appendix - Jacobians is shared under a CC BY-NC 4.0 license and was authored, remixed, and/or curated by Preston Snee.

  • Was this article helpful?

Support Center

How can we help?