Skip to main content
Chemistry LibreTexts

Extra Credit 28

  • Page ID
    96912
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Q11.5.39

    The sugar fructose contains 40.0% C, 6.7% H, and 53.3% O by mass. A solution of 11.7 g of fructose in 325 g of ethanol has a boiling point of 78.59 °C. The boiling point of ethanol is 78.35 °C, and Kb for ethanol is 1.20 °C/m. What is the molecular formula of fructose?

    Solution:

    First find the empirical formula by finding moles of C, H, and O in the sugar fructose by assuming there is 100 grams total of the three elements.

    moles C= 40 g C x 1 mole C/ 12 g C = 3.33 moles C

    moles H= 6.7 g H x 1 mole H/ 1.008 g H = 6.66 moles H

    moles O=53.3 g O x 1 mole O/16 g O = 3.33 moles

    This means the empirical formula of the sugar fructose is CH2O. In order to calculate moles of sugar fructose you use the formula Delta Tb= i x kb x m which you can change to get

    moles Sugar fructose = [delta Tb/kb] x kg solvent

    Plugging in the information provided, you get

    moles fructose = [(78.59 - 78.35) / 1.20] x 0.325 kg ethanol

    moles fructose = 0.065 moles

    Once you find moles of fructose, you can use that information to find the molar mass of the fructose by dividing grams of fructose by moles of fructose.

    MM= 11.7 g / 0.065 moles = 180 g/mole

    Then using that molar mass, you can find the molecular formula by multiplying the molar mass by moles of element divided by 100.

    C= 3.33 moles C / 100% x 180 g/mole = 5.99

    H= 6.66 moles H / 100% x 180 g/mole = 11.98

    O= 3.33 moles O / 100% x 180 g/mole = 5.99

    Rounding to the nearest whole number gives you a molecular formula of C6H12O6.

    Answer:C6H12O6

    Q13.4.23

    Calculate the equilibrium concentrations that result when 0.25 M O2 and 1.0 M HCl react and come to equilibrium.

    \[\ce{4HCl}(g)+\ce{O2}(g)⇌\ce{2Cl2}(g)+\ce{2H2O}(g) \hspace{20px} K_c=3.1×10^{13}\]

    Solution:

    To find the equilibrium concentrations, an ICE table needs to be made first.

    4HCl O2 2 Cl2 2 H2O
    Initial 1.0 M 0.25 M 0 0
    Change -4x -x + 2x +2x
    Equilibrium 1.0 - 4x 0.25 -x 2x 2x

    Kc = [Cl2]2[H2O]2 / [O2][HCl]4

    3.1 x 1013 = 16x2 / (1-4x)4 x (0.25 -x)

    Solving this equation for x, you get x=0.25M

    This means that [HCl]≈ 0M, [O2]≈ 0M, and [Cl2] and [H2O] both equal 0.5M.

    Answer: [HCl] = 0.0016M

    [O2] = 0.0004M

    [Cl2] = 0.4992M

    Q15.2.X

    Calculate \(\ce{[HgCl4^2- ]}\) in a solution prepared by adding 0.0200 mol of NaCl to 0.250 L of a 0.100-M HgCl2 solution.

    [HgCl42-]=

    1.2 x 10-6

    Q15.5.2

    Calculate the concentration of each species present in a 0.050-M solution of H2S.

    Solution:

    Since H2S is a diprotic acid, you will need to construct two ICE tables to find the concentrations of all of the species in the solution. The first reactions is

    H2S + H2O → H3O+ + HS- K1= 9.5 x 10-8

    H2S H2O H3O+ HS-
    Initial 0.050 M --- 0 0
    Change - x --- + x + x
    Equilibrium 0.050 - x --- x x

    K = x2 / (0.050 - x)

    Solving for x gives you x= 6.892 x 10-5 which means that

    [H2S]=0.050 M

    [H3O+] = 6.892 x 10-5 M

    [HS-] = 6.892 x 10-5 M.

    The second reaction is

    HS- + H2O → S2- + H3O+ K2= 1.0 x 10-19

    HS- H2O H3O+ S2-
    Initial 6.892 x 10-5 --- 0 0
    Change - x --- + x + x
    Equilibrium 6.892 x 10-5 - x --- x x

    K2= x2 / (6.892 x 10-5 - x )

    Solving for x gives you x= 2.63 x 10-12 . This means that

    [HS-)= 6.892 x 10-5 M

    [H3O+] =2.63 x 10-12 M

    [S2-]= 2.63 x 10-12 M

    Answer: The concentration for [HS-], [H3O+],[H2S],[S2-] and [OH-] are

    6.67*10-5M

    6.67*10-5M

    0.050M

    1.0*10-19M

    1.0*10-19M

    Respectively

    Q16.4.4

    Use the standard free energy data in Appendix G to determine the free energy change for each of the following reactions, which are run under standard state conditions and 25 °C. Identify each as either spontaneous or nonspontaneous at these conditions.

    1. \(\ce{C}(s,\, \ce{graphite})+\ce{O2}(g)⟶\ce{CO2}(g)\)
    2. \(\ce{O2}(g)+\ce{N2}(g)⟶\ce{2NO}(g)\)
    3. \(\ce{2Cu}(s)+\ce{S}(g)⟶\ce{Cu2S}(s)\)
    4. \(\ce{CaO}(s)+\ce{H2O}(l)⟶\ce{Ca(OH)2}(s)\)
    5. \(\ce{Fe2O3}(s)+\ce{3CO}(g)⟶\ce{2Fe}(s)+\ce{3CO2}(g)\)
    6. \(\ce{CaSO4⋅2H2O}(s)⟶\ce{CaSO4}(s)+\ce{2H2O}(g)\)

    Given:

    \[\ce{P4}(s)+\ce{5O2}(g)⟶\ce{P4O10}(s) \hspace{20px} ΔG^\circ_{298}=\mathrm{−2697.0\: kJ/mol}\]

    \[\ce{2H2}(g)+\ce{O2}(g)⟶\ce{2H2O}(g) \hspace{20px} ΔG^\circ_{298}=\mathrm{−457.18\: kJ/mol}\]

    \[\ce{6H2O}(g)+\ce{P4O10}(g)⟶\ce{4H3PO4}(l) \hspace{20px} ΔG^\circ_{298}=\mathrm{−428.66\: kJ/mol}\]

    Solution:

    To find ΔGo298 you use the equation ΔGo298 = ΔH- TΔS

    If ΔGo298 is negative, then the reaction is spontaneous, but if it is positive, then it is non spontaneous.

    a. ΔGo298= (-393.51) - 298 x (0.00286) = -394.36 kJ/mole (Spontaneous)

    b. ΔGo298= (180.5) - 298 x (0.0248) = 173.11 kJ/mol (Non Spontaneous)

    c. ΔGo298= (-358.31) - 298 x (-0.11322) = -324.57 kJ/mol (Spontaneous)

    d. ΔGo298= (-64.47) - 298 x (-0.0247) = -57.1094 kJ/mol (Spontaneous)

    e. ΔGo298= (-24.72) - 298 x (0.00155) = -29.339 kJ/mol (Spontaneous)

    f. ΔGo298= (104.49) - 298 x (0.28996) = 18.082 kJ/mol (Non Spontaneous)

    a. G = -394.39 kJ/mol; Spontaneous

    b. G = 87.60 kJ/mol; Nonspontaneous

    c. G= -115 kJ/mol; Spontaneous

    d. G= -351 kJ/mol; Spontaneous

    e. G= -333.17 kJ/mol;Spontaneous

    f. G=-228.59 KJ/mol;Spontaneous


    Extra Credit 28 is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?