Search
- https://chem.libretexts.org/Courses/University_of_California_Irvine/UCI%3A_General_Chemistry_1A_(OpenChem)/195Properties_of_Waves_(OpenChem)
- https://chem.libretexts.org/Courses/University_of_Kentucky/UK%3A_General_Chemistry/06%3A_Electronic_Structure_and_Periodic_Properties_of_Elements/6.1%3A_Electromagnetic_EnergyLight and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
- https://chem.libretexts.org/Courses/Los_Angeles_Trade_Technical_College/Foundations_of_Introductory_College_Chemistry/12%3A_Electronic_Structure/11.1%3A_LightLight acts like a wave, with a frequency and a wavelength. The frequency and wavelength of light are related by the speed of light, a constant. Light acts like a particle of energy, whose value is rel...Light acts like a wave, with a frequency and a wavelength. The frequency and wavelength of light are related by the speed of light, a constant. Light acts like a particle of energy, whose value is related to the frequency of light.
- https://chem.libretexts.org/Courses/Nassau_Community_College/General_Chemistry_1/03%3A_Electronic_Structure_and_Periodic_Properties/3.01%3A_Electromagnetic_EnergyLight and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
- https://chem.libretexts.org/Courses/Widener_University/CHEM_176%3A_General_Chemistry_II_(Fischer-Drowos)/12%3A_Electronic_Structure_and_Periodic_Properties/12.02%3A_Electromagnetic_EnergyLight and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
- https://chem.libretexts.org/Courses/National_Yang_Ming_Chiao_Tung_University/Chemical_Principles_for_Medical_Students/01%3A_Electronic_Structure_of_Atoms/1.01%3A_The_Wave_Nature_of_LightUnderstanding the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A basic knowledge of the electronic structure of atoms requires an u...Understanding the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A basic knowledge of the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A wave is a periodic oscillation by which energy is transmitted through space. All waves are periodic, repeating regularly in both space and time. Waves are characterized by several interrelated properties.
- https://chem.libretexts.org/Courses/can/CHEM_210%3A_General_Chemistry_I_(An_Atoms_Up_Approach)/05%3A_The_Quantum_Model_of_the_Atom/5.01%3A_The_Nature_of_Light_and_Electromagnetic_RadiationUnderstanding the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A basic knowledge of the electronic structure of atoms requires an u...Understanding the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A basic knowledge of the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A wave is a periodic oscillation by which energy is transmitted through space. All waves are periodic, repeating regularly in both space and time. Waves are characterized by several interrelated properties.
- https://chem.libretexts.org/Courses/Oregon_Institute_of_Technology/OIT%3A_CHE_101_-_Introduction_to_General_Chemistry/02%3A_Atoms_and_the_Periodic_Table/2.08%3A_Electromagnetic_Energy_-_Lab_4Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
- https://chem.libretexts.org/Courses/Widener_University/Widener_University%3A_Chem_135/07%3A_Electronic_Structure_and_Periodic_Properties/7.01%3A_Light_and_Atomic_StructureLight and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
- https://chem.libretexts.org/Courses/Thompson_Rivers_University/CHEM_1500%3A_Chemical_Bonding_and_Organic_Chemistry/02%3A_Quantum_Theory_and_Electronic_Structure_of_Atoms/2.01%3A_Electromagnetic_EnergyLight and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
- https://chem.libretexts.org/Courses/SUNY_Oneonta/Chem_221%3A_Organic_Chemistry_I_(Bennett)/3%3AStuff_to_Review_from_General_Chemistry/05%3A_Electronic_Structure_and_Periodic_Properties/5.01%3A_Electromagnetic_EnergyLight and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.