Loading [MathJax]/extensions/mml2jax.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • Number of Print Columns
    • PrintOptions
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
  • Include attachments
Searching in
About 26 results
  • https://chem.libretexts.org/Bookshelves/General_Chemistry/General_Chemistry_Supplement_(Eames)/Quantum_Chemistry/Discovery_of_Quantization
    He assumed that the lines in the spectrum come from electrons moving from one stable orbit to another, and the wavelength of the light emitted equals the energy difference of the orbits.
  • https://chem.libretexts.org/Courses/Westminster_College/CHE_180_-_Inorganic_Chemistry/01%3A_Chapter_1_-_Electronic_Structure_of_the_Atom/1.3%3A_Development_of_Quantum_Theory
    Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical m...Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical model of atoms describes the 3D  position of the electron in a probabilistic manner according to a mathematical function called a wavefunction, often denoted as ψ. The squared magnitude of the wavefunction describes the distribution of the probability of finding the electron in a particular region in
  • https://chem.libretexts.org/Courses/CSU_San_Bernardino/CHEM_2200%3A_General_Chemistry_II_(Mink)/06%3A_Electronic_Structure_and_Periodic_Properties/6.04%3A_Development_of_Quantum_Theory
    Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical m...Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical model of atoms describes the 3D  position of the electron in a probabilistic manner according to a mathematical function called a wavefunction, often denoted as ψ. The squared magnitude of the wavefunction describes the distribution of the probability of finding the electron in a particular region in
  • https://chem.libretexts.org/Courses/Louisville_Collegiate_School/General_Chemistry/LibreTexts_Louisville_Collegiate_School_Chapters_06%3A_Electronic_Structure_and_Periodic_Properties_of_Elements/LibreTexts%2F%2FLouisville_Collegiate_School%2F%2FChapters%2F%2F06%3A_Electronic_Structure_and_Periodic_Properties_of_Elements%2F%2F6.3%3A_Development_of_Quantum_Theory
    Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical m...Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical model of atoms describes the 3D  position of the electron in a probabilistic manner according to a mathematical function called a wavefunction, often denoted as ψ. The squared magnitude of the wavefunction describes the distribution of the probability of finding the electron in a particular region in
  • https://chem.libretexts.org/Courses/Widener_University/CHEM_175_-_General_Chemistry_I_(Van_Bramer)/05%3A_Electronic_Structure_and_Periodic_Properties/5.02%3A_Development_of_Quantum_Theory
    Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical m...Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical model of atoms describes the 3D  position of the electron in a probabilistic manner according to a mathematical function called a wavefunction, often denoted as ψ. The squared magnitude of the wavefunction describes the distribution of the probability of finding the electron in a particular region in
  • https://chem.libretexts.org/Bookshelves/General_Chemistry/ChemPRIME_(Moore_et_al.)/05%3A_The_Electronic_Structure_of_Atoms/5.02%3A_Electrons_and_Valence
    In the helium atom the two electrons occupy only one shell, in the chlorine atom the 17 electrons are arranged in three shells, and in the potassium atom the 19 electrons occupy four shells. A similar...In the helium atom the two electrons occupy only one shell, in the chlorine atom the 17 electrons are arranged in three shells, and in the potassium atom the 19 electrons occupy four shells. A similar argument leads to the conclusion that the third shell also requires eight electrons to fill it and that an atom of argon has two electrons in the first shell, eight in the second, and eight in the third, a total of 18 electrons.
  • https://chem.libretexts.org/Under_Construction/Purgatory/CHEM_2100%3A_General_Chemistry_I_(Mink)/06%3A_Electronic_Structure_and_Periodic_Properties/6.03%3A_Development_of_Quantum_Theory
    Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical m...Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical model of atoms describes the 3D  position of the electron in a probabilistic manner according to a mathematical function called a wavefunction, often denoted as ψ. The squared magnitude of the wavefunction describes the distribution of the probability of finding the electron in a particular region in
  • https://chem.libretexts.org/Courses/CSU_San_Bernardino/CHEM_2100%3A_General_Chemistry_I_(Mink)/06%3A_Electronic_Structure_and_Periodic_Properties/6.04%3A_Development_of_Quantum_Theory
    Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical m...Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical model of atoms describes the 3D  position of the electron in a probabilistic manner according to a mathematical function called a wavefunction, often denoted as ψ. The squared magnitude of the wavefunction describes the distribution of the probability of finding the electron in a particular region in
  • https://chem.libretexts.org/Courses/Widener_University/Widener_University%3A_Chem_135/07%3A_Electronic_Structure_and_Periodic_Properties/7.02%3A_Development_of_Quantum_Theory
    Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical m...Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical model of atoms describes the 3D  position of the electron in a probabilistic manner according to a mathematical function called a wavefunction, often denoted as ψ. The squared magnitude of the wavefunction describes the distribution of the probability of finding the electron in a particular region in
  • https://chem.libretexts.org/Courses/City_College_of_San_Francisco/CCSF_Chemistry_Resources/01%3A_CHE_101_-_Introduction_to_General_Chemistry/1.01%3A_Atoms_and_the_Periodic_Table/1.1.04%3A_Development_of_Quantum_Theory
    Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical m...Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical model of atoms describes the 3D  position of the electron in a probabilistic manner according to a mathematical function called a wavefunction, often denoted as ψ. The squared magnitude of the wavefunction describes the distribution of the probability of finding the electron in a particular region in
  • https://chem.libretexts.org/Workbench/OpenStax_Chemistry_Remixed%3A_Clovis_Community_College/07%3A_Electronic_Structure_and_Periodic_Properties/7.03%3A_Development_of_Quantum_Theory
    Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical m...Macroscopic objects act as particles. Microscopic objects (such as electrons) have properties of both a particle and a wave. but their exact trajectories cannot be determined. The quantum mechanical model of atoms describes the 3D  position of the electron in a probabilistic manner according to a mathematical function called a wavefunction, often denoted as ψ. The squared magnitude of the wavefunction describes the distribution of the probability of finding the electron in a particular region in

Support Center

How can we help?