Search
- https://chem.libretexts.org/Workbench/OpenStax_Chemistry_Remixed%3A_Clovis_Community_College/21%3A_Nuclear_Chemistry/21.04%3A_Radioactive_DecayUnstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often in...Unstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often involve γ rays, and some nuclei decay by electron capture. Each of these modes of decay leads to the formation of a new stable nuclei sometimes via multiple decays before ending in a stable isotope. All nuclear decay processes follow first-order kinetics and each radioisotope has its own half-life.
- https://chem.libretexts.org/Bookshelves/General_Chemistry/Chemistry_2e_(OpenStax)/21%3A_Nuclear_Chemistry/21.03%3A_Radioactive_DecayUnstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often in...Unstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often involve γ rays, and some nuclei decay by electron capture. Each of these modes of decay leads to the formation of a new stable nuclei sometimes via multiple decays before ending in a stable isotope. All nuclear decay processes follow first-order kinetics and each radioisotope has its own half-life.
- https://chem.libretexts.org/Bookshelves/General_Chemistry/Chemistry_1e_(OpenSTAX)/21%3A_Nuclear_Chemistry/21.03%3A_Radioactive_DecayUnstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often in...Unstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often involve γ rays, and some nuclei decay by electron capture. Each of these modes of decay leads to the formation of a new stable nuclei sometimes via multiple decays before ending in a stable isotope. All nuclear decay processes follow first-order kinetics and each radioisotope has its own half-life.
- https://chem.libretexts.org/Courses/University_of_Minnesota_Rochester/genchem2/3%3A_Kinetics/3.9.0%3A_Nuclear_Chemistry/3.9.3_Radioactive_DecayUnstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often in...Unstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often involve γ rays, and some nuclei decay by electron capture. Each of these modes of decay leads to the formation of a new stable nuclei sometimes via multiple decays before ending in a stable isotope. All nuclear decay processes follow first-order kinetics and each radioisotope has its own half-life.
- https://chem.libretexts.org/Courses/Valley_City_State_University/Chem_122/Chapter_9%3A_Nuclear_Chemistry/9.2%3A_Radioactive_DecayUnstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often in...Unstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often involve γ rays, and some nuclei decay by electron capture. Each of these modes of decay leads to the formation of a new stable nuclei sometimes via multiple decays before ending in a stable isotope. All nuclear decay processes follow first-order kinetics and each radioisotope has its own half-life.
- https://chem.libretexts.org/Courses/University_of_Kentucky/UK%3A_General_Chemistry/21%3A_Nuclear_Chemistry/21.3%3A_Radioactive_DecayUnstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often in...Unstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often involve γ rays, and some nuclei decay by electron capture. Each of these modes of decay leads to the formation of a new stable nuclei sometimes via multiple decays before ending in a stable isotope. All nuclear decay processes follow first-order kinetics and each radioisotope has its own half-life.
- https://chem.libretexts.org/Courses/CSU_San_Bernardino/CHEM_2200%3A_General_Chemistry_II_(Mink)/21%3A_Nuclear_Chemistry/21.04%3A_Radioactive_DecayUnstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often in...Unstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often involve γ rays, and some nuclei decay by electron capture. Each of these modes of decay leads to the formation of a new stable nuclei sometimes via multiple decays before ending in a stable isotope. All nuclear decay processes follow first-order kinetics and each radioisotope has its own half-life.
- https://chem.libretexts.org/Courses/Louisville_Collegiate_School/General_Chemistry/LibreTexts_Louisville_Collegiate_School_Chapters_21%3A_Nuclear_Chemistry/LibreTexts%2F%2FLouisville_Collegiate_School%2F%2FChapters%2F%2F21%3A_Nuclear_Chemistry%2F%2F21.3%3A_Radioactive_DecayUnstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often in...Unstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often involve γ rays, and some nuclei decay by electron capture. Each of these modes of decay leads to the formation of a new stable nuclei sometimes via multiple decays before ending in a stable isotope. All nuclear decay processes follow first-order kinetics and each radioisotope has its own half-life.
- https://chem.libretexts.org/Courses/Grand_Rapids_Community_College/CHM_120%3A_Survey_of_General_Chemistry_(Crandell)/02%3A_Measurements_and_the_Periodic_Table/2.07%3A_Radioactive_DecayUnstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often in...Unstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often involve γ rays, and some nuclei decay by electron capture. Each of these modes of decay leads to the formation of a new stable nuclei sometimes via multiple decays before ending in a stable isotope. All nuclear decay processes follow first-order kinetics and each radioisotope has its own half-life.
- https://chem.libretexts.org/Courses/City_College_of_San_Francisco/Chemistry_101B/10%3A_Nuclear_Chemistry/10.3%3A_Radioactive_DecayUnstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often in...Unstable nuclei undergo spontaneous radioactive decay. The most common types of radioactivity are α decay, β decay, γ emission, positron emission, and electron capture. Nuclear reactions also often involve γ rays, and some nuclei decay by electron capture. Each of these modes of decay leads to the formation of a new stable nuclei sometimes via multiple decays before ending in a stable isotope. All nuclear decay processes follow first-order kinetics and each radioisotope has its own half-life.
- https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry_-_The_Central_Science_(Brown_et_al.)/21%3A_Nuclear_Chemistry/21.01%3A_RadioactivityNuclei can undergo reactions that change their number of protons, number of neutrons, or energy state. Many different particles can be involved and the most common are protons, neutrons, positrons, al...Nuclei can undergo reactions that change their number of protons, number of neutrons, or energy state. Many different particles can be involved and the most common are protons, neutrons, positrons, alpha (α) particles, beta (β) particles (high-energy electrons), and gamma (γ) rays (which compose high-energy electromagnetic radiation). As with chemical reactions, nuclear reactions are always balanced. When a nuclear reaction occurs, the total mass (number) and the total charge remain unchanged.