Loading [MathJax]/extensions/TeX/color.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • Number of Print Columns
    • PrintOptions
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
  • Include attachments
Searching in
About 60 results
  • https://chem.libretexts.org/Courses/University_of_Kentucky/UK%3A_General_Chemistry/06%3A_Electronic_Structure_and_Periodic_Properties_of_Elements/6.1%3A_Electromagnetic_Energy
    Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
  • https://chem.libretexts.org/Courses/Los_Angeles_Trade_Technical_College/Foundations_of_Introductory_College_Chemistry/12%3A_Electronic_Structure/11.1%3A_Light
    Light acts like a wave, with a frequency and a wavelength. The frequency and wavelength of light are related by the speed of light, a constant. Light acts like a particle of energy, whose value is rel...Light acts like a wave, with a frequency and a wavelength. The frequency and wavelength of light are related by the speed of light, a constant. Light acts like a particle of energy, whose value is related to the frequency of light.
  • https://chem.libretexts.org/Courses/Nassau_Community_College/General_Chemistry_1/03%3A_Electronic_Structure_and_Periodic_Properties/3.01%3A_Electromagnetic_Energy
    Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
  • https://chem.libretexts.org/Courses/Widener_University/CHEM_176%3A_General_Chemistry_II_(Fischer-Drowos)/12%3A_Electronic_Structure_and_Periodic_Properties/12.02%3A_Electromagnetic_Energy
    Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
  • https://chem.libretexts.org/Courses/National_Yang_Ming_Chiao_Tung_University/Chemical_Principles_for_Medical_Students/01%3A_Electronic_Structure_of_Atoms/1.01%3A_The_Wave_Nature_of_Light
    Understanding the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A basic knowledge of the electronic structure of atoms requires an u...Understanding the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A basic knowledge of the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A wave is a periodic oscillation by which energy is transmitted through space. All waves are periodic, repeating regularly in both space and time. Waves are characterized by several interrelated properties.
  • https://chem.libretexts.org/Courses/can/CHEM_210%3A_General_Chemistry_I_(An_Atoms_Up_Approach)/05%3A_The_Quantum_Model_of_the_Atom/5.01%3A_The_Nature_of_Light_and_Electromagnetic_Radiation
    Understanding the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A basic knowledge of the electronic structure of atoms requires an u...Understanding the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A basic knowledge of the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A wave is a periodic oscillation by which energy is transmitted through space. All waves are periodic, repeating regularly in both space and time. Waves are characterized by several interrelated properties.
  • https://chem.libretexts.org/Courses/Oregon_Institute_of_Technology/OIT%3A_CHE_101_-_Introduction_to_General_Chemistry/02%3A_Atoms_and_the_Periodic_Table/2.08%3A_Electromagnetic_Energy_-_Lab_4
    Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
  • https://chem.libretexts.org/Courses/Widener_University/Widener_University%3A_Chem_135/07%3A_Electronic_Structure_and_Periodic_Properties/7.01%3A_Light_and_Atomic_Structure
    Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
  • https://chem.libretexts.org/Courses/Thompson_Rivers_University/CHEM_1500%3A_Chemical_Bonding_and_Organic_Chemistry/02%3A_Quantum_Theory_and_Electronic_Structure_of_Atoms/2.01%3A_Electromagnetic_Energy
    Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
  • https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(LibreTexts)/01%3A_The_Dawn_of_the_Quantum_Theory/1.03%3A_Photoelectric_Effect_Explained_with_Quantum_Hypothesis
    This page discusses the photoelectric effect, highlighting the threshold frequency for electron emission and its demonstration of light's dual wave-particle nature. Einstein’s quantum theory explains ...This page discusses the photoelectric effect, highlighting the threshold frequency for electron emission and its demonstration of light's dual wave-particle nature. Einstein’s quantum theory explains the relationship between light frequency and the energy of ejected electrons, while the work function represents the energy needed to remove an electron from a metal. Initial resistance to these ideas was later overcome by Millikan's confirmation.
  • https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Instrumental_Analysis_(LibreTexts)/02%3A_Electrical_Components_and_Circuits/2.03%3A_Alternating_Current_Circuits
    A direct current has a fixed value that is independent of time. An alternating current, on the other hand, has a value that changes with time. This change in current follows a pattern that we can char...A direct current has a fixed value that is independent of time. An alternating current, on the other hand, has a value that changes with time. This change in current follows a pattern that we can characterize by it period—the time for one complete cycle—or by its frequency, which is the reciprocal of its period. Frequency is reported in hertz (Hz), which is equivalent to one cycle per second.

Support Center

How can we help?