Loading [MathJax]/extensions/TeX/autobold.js
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • Number of Print Columns
    • PrintOptions
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
  • Include attachments
Searching in
About 64 results
  • https://chem.libretexts.org/Courses/University_of_Kentucky/UK%3A_General_Chemistry/06%3A_Electronic_Structure_and_Periodic_Properties_of_Elements/6.1%3A_Electromagnetic_Energy
    Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
  • https://chem.libretexts.org/Courses/Los_Angeles_Trade_Technical_College/Foundations_of_Introductory_College_Chemistry/12%3A_Electronic_Structure/11.1%3A_Light
    Light acts like a wave, with a frequency and a wavelength. The frequency and wavelength of light are related by the speed of light, a constant. Light acts like a particle of energy, whose value is rel...Light acts like a wave, with a frequency and a wavelength. The frequency and wavelength of light are related by the speed of light, a constant. Light acts like a particle of energy, whose value is related to the frequency of light.
  • https://chem.libretexts.org/Courses/Nassau_Community_College/General_Chemistry_1/03%3A_Electronic_Structure_and_Periodic_Properties/3.01%3A_Electromagnetic_Energy
    Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
  • https://chem.libretexts.org/Bookshelves/General_Chemistry/General_Chemistry_Supplement_(Eames)/Quantum_Chemistry/Light_as_a_Wave
    Light is called electromagnetic radiation, which basically means that it radiates (travels) and the wave part is oscillating electric and magnetic fields. X-rays used in medicine have very short wavel...Light is called electromagnetic radiation, which basically means that it radiates (travels) and the wave part is oscillating electric and magnetic fields. X-rays used in medicine have very short wavelengths and high frequencies; UV (ultraviolet) light gives you sunburns and helps you make vitamin D, visible light is normal light, IR (infrared) is used for night-vision goggles, microwave is used in cooking, and radio is used in radios.
  • https://chem.libretexts.org/Courses/Widener_University/CHEM_176%3A_General_Chemistry_II_(Fischer-Drowos)/12%3A_Electronic_Structure_and_Periodic_Properties/12.02%3A_Electromagnetic_Energy
    Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
  • https://chem.libretexts.org/Courses/National_Yang_Ming_Chiao_Tung_University/Chemical_Principles_for_Medical_Students/01%3A_Electronic_Structure_of_Atoms/1.01%3A_The_Wave_Nature_of_Light
    Understanding the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A basic knowledge of the electronic structure of atoms requires an u...Understanding the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A basic knowledge of the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A wave is a periodic oscillation by which energy is transmitted through space. All waves are periodic, repeating regularly in both space and time. Waves are characterized by several interrelated properties.
  • https://chem.libretexts.org/Courses/can/CHEM_210%3A_General_Chemistry_I_(An_Atoms_Up_Approach)/05%3A_The_Quantum_Model_of_the_Atom/5.01%3A_The_Nature_of_Light_and_Electromagnetic_Radiation
    Understanding the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A basic knowledge of the electronic structure of atoms requires an u...Understanding the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A basic knowledge of the electronic structure of atoms requires an understanding of the properties of waves and electromagnetic radiation. A wave is a periodic oscillation by which energy is transmitted through space. All waves are periodic, repeating regularly in both space and time. Waves are characterized by several interrelated properties.
  • https://chem.libretexts.org/Courses/Oregon_Institute_of_Technology/OIT%3A_CHE_101_-_Introduction_to_General_Chemistry/02%3A_Atoms_and_the_Periodic_Table/2.08%3A_Electromagnetic_Energy_-_Lab_4
    Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
  • https://chem.libretexts.org/Courses/Los_Angeles_Trade_Technical_College/Analytical_Chemistry/2%3A_Analytical_Chemistry_2.0_(Harvey)/15%3A_Developing_a_Standard_Method/15.1%3A_Optimizing_the_Experimental_Procedure
    Developing a standard method requires optimizing multiple aspects. Using the terminology of statisticians, we call the solution’s absorbance the system’s response. Hydrogen peroxide and sulfuric acid ...Developing a standard method requires optimizing multiple aspects. Using the terminology of statisticians, we call the solution’s absorbance the system’s response. Hydrogen peroxide and sulfuric acid are factors whose concentrations, or factor levels, determine the system’s response. To optimize the method we need to find the best combination of factor levels. Usually we seek a maximum response, but sometimes, such as minimizing an analysis’s percent error, we are looking for a minimum response.
  • https://chem.libretexts.org/Courses/Widener_University/Widener_University%3A_Chem_135/07%3A_Electronic_Structure_and_Periodic_Properties/7.01%3A_Light_and_Atomic_Structure
    Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.
  • https://chem.libretexts.org/Courses/Thompson_Rivers_University/CHEM_1500%3A_Chemical_Bonding_and_Organic_Chemistry/02%3A_Quantum_Theory_and_Electronic_Structure_of_Atoms/2.01%3A_Electromagnetic_Energy
    Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelengt...Light and other forms of electromagnetic radiation move through a vacuum with a constant speed, c. This radiation shows wavelike behavior, which can be characterized by a frequency, ν, and a wavelength, λ, such that c = λν. Light is an example of a travelling wave. Other important wave phenomena include standing waves, periodic oscillations, and vibrations. Standing waves exhibit quantization, since their wavelengths are limited to discrete integer multiples of some characteristic lengths.

Support Center

How can we help?