Processing math: 100%
Skip to main content
Library homepage
 

Text Color

Text Size

 

Margin Size

 

Font Type

Enable Dyslexic Font
Chemistry LibreTexts

Search

  • Filter Results
  • Location
  • Classification
    • Article type
    • Stage
    • Author
    • Show Page TOC
    • Cover Page
    • License
    • Transcluded
    • Number of Print Columns
    • PrintOptions
    • OER program or Publisher
    • Student Analytics
    • Autonumber Section Headings
    • License Version
    • Print CSS
  • Include attachments
Searching in
About 37 results
  • https://chem.libretexts.org/Courses/University_of_Minnesota_Rochester/genchem2/5%3A_Electrochemistry/5.2%3A_Galvanic_Cells
    Electrochemical cells typically consist of two half-cells. The half-cells separate the oxidation half-reaction from the reduction half-reaction and make it possible for current to flow through an exte...Electrochemical cells typically consist of two half-cells. The half-cells separate the oxidation half-reaction from the reduction half-reaction and make it possible for current to flow through an external wire. One half-cell contains the anode. Oxidation occurs at the anode. The anode is connected to the cathode in the other half-cell. Reduction occurs at the cathode. Adding a salt bridge completes the circuit allowing current to flow.
  • https://chem.libretexts.org/Courses/CSU_San_Bernardino/CHEM_2200%3A_General_Chemistry_II_(Mink)/17%3A_Electrochemistry/17.03%3A_Galvanic_Cells
    Electrochemical cells typically consist of two half-cells. The half-cells separate the oxidation half-reaction from the reduction half-reaction and make it possible for current to flow through an exte...Electrochemical cells typically consist of two half-cells. The half-cells separate the oxidation half-reaction from the reduction half-reaction and make it possible for current to flow through an external wire. One half-cell contains the anode. Oxidation occurs at the anode. The anode is connected to the cathode in the other half-cell. Reduction occurs at the cathode. Adding a salt bridge completes the circuit allowing current to flow.
  • https://chem.libretexts.org/Bookshelves/Analytical_Chemistry/Supplemental_Modules_(Analytical_Chemistry)/Analytical_Sciences_Digital_Library/Courseware/Analytical_Electrochemistry%3A_The_Basic_Concepts/03_Fundamentals_of_Electrochemistry/A._Electrochemical_Thermodynamics/01_Potential
    Potential can be described as the work required to move an electron or other point reference charge from an infinite distance away to a point of interest – inside of a metallic electrode, for example....Potential can be described as the work required to move an electron or other point reference charge from an infinite distance away to a point of interest – inside of a metallic electrode, for example. The magnitude of the potential at the surface of an electrode depends on the excess charge that exists there above that of the metal alone. An external power supply is capable of forcing excess electrons into or out of the electrode, leading to a non-equilibrium condition at the interface.
  • https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Physical_Chemistry_(Fleming)/10%3A_Electrochemistry/10.04%3A_Entropy_of_Electrochemical_Cells
    This page discusses the temperature dependence of the Gibbs function and cell potential in a Daniel cell. Equations relating changes in Gibbs energy and cell potential to entropy are provided. Data fo...This page discusses the temperature dependence of the Gibbs function and cell potential in a Daniel cell. Equations relating changes in Gibbs energy and cell potential to entropy are provided. Data for the Daniel cell is fit to a quadratic function to determine the temperature dependence of cell potential, showing that entropy change (ΔS) affects the cell potential at different temperatures.
  • https://chem.libretexts.org/Courses/University_of_Kentucky/UK%3A_General_Chemistry/17%3A_Electrochemistry/17.2%3A_Galvanic_Cells
    Electrochemical cells typically consist of two half-cells. The half-cells separate the oxidation half-reaction from the reduction half-reaction and make it possible for current to flow through an exte...Electrochemical cells typically consist of two half-cells. The half-cells separate the oxidation half-reaction from the reduction half-reaction and make it possible for current to flow through an external wire. One half-cell contains the anode. Oxidation occurs at the anode. The anode is connected to the cathode in the other half-cell. Reduction occurs at the cathode. Adding a salt bridge completes the circuit allowing current to flow.
  • https://chem.libretexts.org/Courses/Louisville_Collegiate_School/General_Chemistry/LibreTexts_Louisville_Collegiate_School_Chapters_17%3A_Electrochemistry/LibreTexts%2F%2FLouisville_Collegiate_School%2F%2FChapters%2F%2F17%3A_Electrochemistry%2F%2F17.2%3A_Galvanic_Cells
    Electrochemical cells typically consist of two half-cells. The half-cells separate the oxidation half-reaction from the reduction half-reaction and make it possible for current to flow through an exte...Electrochemical cells typically consist of two half-cells. The half-cells separate the oxidation half-reaction from the reduction half-reaction and make it possible for current to flow through an external wire. One half-cell contains the anode. Oxidation occurs at the anode. The anode is connected to the cathode in the other half-cell. Reduction occurs at the cathode. Adding a salt bridge completes the circuit allowing current to flow.
  • https://chem.libretexts.org/Bookshelves/Introductory_Chemistry/Introductory_Chemistry_(CK-12)/23%3A_Electrochemistry/23.06%3A_Calculating_Standard_Cell_Potentials
    This page discusses the corrosion of steel and the use of galvanized nails to prevent rust through zinc coating. It explores electrochemical cells, showing the calculation of cell potential using redu...This page discusses the corrosion of steel and the use of galvanized nails to prevent rust through zinc coating. It explores electrochemical cells, showing the calculation of cell potential using reduction potentials from a standard table, including an example with tin and silver ions resulting in a spontaneous reaction (+0.94 V).
  • https://chem.libretexts.org/Bookshelves/General_Chemistry/Map%3A_Chemistry_-_The_Central_Science_(Brown_et_al.)/20%3A_Electrochemistry/20.03%3A_Voltaic_Cells
    A galvanic (voltaic) cell uses the energy released during a spontaneous redox reaction to generate electricity, whereas an electrolytic cell consumes electrical energy from an external source to force...A galvanic (voltaic) cell uses the energy released during a spontaneous redox reaction to generate electricity, whereas an electrolytic cell consumes electrical energy from an external source to force a reaction to occur. Electrochemistry is the study of the relationship between electricity and chemical reactions. The oxidation–reduction reaction that occurs during an electrochemical process consists of two half-reactions, one representing the oxidation process and one the reduction process.
  • https://chem.libretexts.org/Courses/Oregon_Tech_PortlandMetro_Campus/OT_-_PDX_-_Metro%3A_General_Chemistry_II/09%3A_Electrochemistry/9.02%3A_Galvanic_Cells
    Electrochemical cells typically consist of two half-cells. The half-cells separate the oxidation half-reaction from the reduction half-reaction and make it possible for current to flow through an exte...Electrochemical cells typically consist of two half-cells. The half-cells separate the oxidation half-reaction from the reduction half-reaction and make it possible for current to flow through an external wire. One half-cell contains the anode. Oxidation occurs at the anode. The anode is connected to the cathode in the other half-cell. Reduction occurs at the cathode. Adding a salt bridge completes the circuit allowing current to flow.
  • https://chem.libretexts.org/Bookshelves/General_Chemistry/Chemistry_2e_(OpenStax)/17%3A_Electrochemistry/17.02%3A_Galvanic_Cells
    Electrochemical cells typically consist of two half-cells. The half-cells separate the oxidation half-reaction from the reduction half-reaction and make it possible for current to flow through an exte...Electrochemical cells typically consist of two half-cells. The half-cells separate the oxidation half-reaction from the reduction half-reaction and make it possible for current to flow through an external wire. One half-cell contains the anode. Oxidation occurs at the anode. The anode is connected to the cathode in the other half-cell. Reduction occurs at the cathode. Adding a salt bridge completes the circuit allowing current to flow.
  • https://chem.libretexts.org/Courses/Thompson_Rivers_University/TRU%3A_Fundamentals_and_Principles_of_Chemistry_(CHEM_1510_and_CHEM_1520)/09%3A_Electrochemistry/9.02%3A_Galvanic_Cells
    Electrochemical cells typically consist of two half-cells. The half-cells separate the oxidation half-reaction from the reduction half-reaction and make it possible for current to flow through an exte...Electrochemical cells typically consist of two half-cells. The half-cells separate the oxidation half-reaction from the reduction half-reaction and make it possible for current to flow through an external wire. One half-cell contains the anode. Oxidation occurs at the anode. The anode is connected to the cathode in the other half-cell. Reduction occurs at the cathode. Adding a salt bridge completes the circuit allowing current to flow.

Support Center

How can we help?