Skip to main content
Chemistry LibreTexts

Answers to Gas Laws Practice Problems

  • Page ID
    11862
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    1. \(\mathrm{\textrm{molar mass of }Cl_2 = 2(35.45) = 70.90\: g/mole}\)

    \(\mathrm{d=\dfrac{mm}{mV}=\dfrac{70.9\:g}{22.4\:L}=3.17\: g/L}\)

    1. Molar volume is the volume when \(\mathrm{n = 1.00\: mole}\).

    \(\mathrm{V = ?}\); \(\mathrm{n = 1.00\: mol}\); \(\mathrm{T = 78^\circ C + 273 = 351\: K}\); \(\mathrm{P = 1.20\: atm}\)

    \(\mathrm{V=\dfrac{nRT}{P}=\dfrac{(1.00\:mol)(0.08206)(351\:K)}{1.20\:atm}=24.0\: L}\)

    1. \(\mathrm{V_1 = 6.66\: L}\); STP: \(\mathrm{T_1 = 0^\circ C = 273\: K}\); \(\mathrm{P_1 = 1.00\: atm = 760\: torr}\);

    \(\mathrm{T_2 = 546\: ^\circ C + 273 = 819\: K}\); \(\mathrm{P_2 = 684\: torr}\); \(\mathrm{V_2 = ?}\)

    \(\mathrm{\dfrac{P_1V_1}{T_1}=\dfrac{P_2V_2}{T_2}}\) \(\mathrm{V_2=V_1\times\dfrac{P_1}{P_2}\times\dfrac{T_2}{T_1}=6.66\:L\times\dfrac{760\:torr}{684\:torr}\times\dfrac{819\:K}{273\:K}=22.2\:L}\)

    1. \(\mathrm{mass\: of\: CO_2 = ?}\); \(\mathrm{V = 5.60\: L}\); \(\mathrm{T = 273K}\); \(\mathrm{P = 2.00\: atm}\)

    \(\mathrm{n=\dfrac{PV}{RT}=\dfrac{(2.00\:atm)(5.60\:L)}{(0.08206)(273\:K)}=0.500\:moles}\); \(\mathrm{0.500\: moles\times\dfrac{44.0\:g\:CO_2}{1\:mole\:CO_2} =22.0\: g\: CO_2}\)

    1. From the Table, \(\mathrm{P_{H_2O}}\) at \(\mathrm{21^\circ C = 19\: mm\: Hg}\); You can subtract in atm or torr.

    For torr: \(\mathrm{P_T = 1.02\: atm\times\dfrac{760\:torr}{1\:atm} = 775\: torr}\); \(\mathrm{P_{N_2} = P_T - P_{H_2O} = 775 - 19 = 756\: torr}\)

    For atm: \(\mathrm{P_{H_2O} = 19\: torr\times\dfrac{1\:atm}{760\:torr} = 0.025\: atm}\); \(\mathrm{P_{N_2} = P_T - P_{H_2O} = 1.02 - 0.025 = 0.99\: atm}\)

    1. \(\mathrm{P_{N_2}=0.50\: atm}\); \(\mathrm{P_{O_2} = 0.30\: atm}\); \(\mathrm{28.0\: g\: N_2}\); \(\mathrm{n_T = ?}\)

    \(\mathrm{P_T = P_{N_2} + P_{O_2} = 0.50\: atm + 0.30\: atm = 0.80\: atm}\);

    \(\mathrm{moles\: N_2 = 28.0\: g\: N_2 \times\dfrac{1\:mole\:N_2}{28.0\:g\:N_2} = 1.00\: mol\: N_2}\)

    \(\mathrm{P_{N_2}=\left(\dfrac{n_{N_2}}{n_T} \right )P_T}\) \(\mathrm{n_T=\left(\dfrac{P_T}{P_{N_2}}\right)n_{N_2}=\left(\dfrac{0.80}{0.50}\right)1.00\:mol=1.6\:moles}\)

      1. \(\mathrm{2.80\: L \times\dfrac{1\:mole\:O_2}{22.4\:L\:O_2}\times\dfrac{4\:mole\:Na}{1\:mole\:O_2}\times\dfrac{23.0\:g\:Na}{1\:mole\:Na}=11.5\: g\: Na}\)
      2. First find molar volume at 25°C and 2.00 atm:

    \(\mathrm{V=\dfrac{nRT}{P}=\dfrac{(1.00\:mol)(0.08206)(298\:K)}{2.00\:atm}=12.2\:L}\)

    \(\mathrm{4.60\: g\: Na \times\dfrac{1\:mole\:Na}{23.0\:g\:Na}\times\dfrac{1\:mole\:O_2}{4\:mole\:Na}\times\dfrac{12.2\:L\:O_2}{1\:mole\:O_2}= 0.610\: L\: O_2}\)

    1. First find molar volume at 78°C and 1.20 atm. See problem 2: at 78°C and 1.20 atm, molar volume is 24.0 L/mole.

    \(\mathrm{\textrm{molar mass of ethane }(C_2H_6) = 2(12.0) + 6(1.0) = 30.0\: g/mole}\)

    \(\mathrm{d=\dfrac{mm}{mV}=\dfrac{30.0\:g}{24.0\:L}= 1.25\: g/L}\)


    This page titled Answers to Gas Laws Practice Problems is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Delmar Larsen.

    • Was this article helpful?