Worksheet 10B Solutions
- Page ID
- 184988
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Q1
The Hamiltonian consists of the kinetic and potential energy.
\[ \hat{H} = \hat{T} + \hat{V} \label{1}\]
In atomic units all the constants are set to equal 1, \(h=1\)
Therefore the kinetic term in the Hamiltonian is transformed
\[\hat{T} = \dfrac{-\hbar^2}{2m} \bigtriangledown^2 \psi \Longrightarrow \dfrac{-1}{2} \bigtriangledown^2 \psi \label{2}\]
The potential terms in the \(H_2^+\) molecule are then given in atomic units
\[\hat{V} = \dfrac{-1}{r_A} + \dfrac{-1}{r_B} \label{3} \]
Q2
The potential term for the interaction between the two protons in atomic units is
\[ \hat{V} = \dfrac{1}{r_{AB}} \label{4}\]
To describe the Hamiltonian for the electron both the kinetic term for the nuclei can be ignored. This term would impart a constant energy to the electron that is independent of the electron's motion for each position of the nuclei.
\[E_{total} = E_{e^-} + T_{molecule} \label{5}\]
You calculate the electron energy using the Hamiltonian in question 1 for a nuclei position, then move the nuclei and calculate the electron energy again. And repeat for as many nuclei positions as necessary, in a computer.
For the variation method, I would start with a linear combination of the hydrogen atomic orbitals, like in the next question.
\[\Phi = c_1\psi +c_2\psi \label{6} \]
When we do this problem in the computer almost all programs use a basis set of Gaussian functions to create the orbitals.
Q3
The terms that arise from multiplying the linear combination of the wave function are
\[<\phi|\phi> = <c_11s_A + c_2 1s_B |c_11s_A + c_2 1s_B >\]
\[= <c_11s_A|c_11s_A> + <c_11s_A|c_21s_B> + <c_21s_B|c_11s_A> +<c_21s_B|c_21s_B> \label{7} \]
The first term
\[<c_11s_A|c_11s_A> = c_1^2 <1s_A|1s_A> = c_1^2 \label{8}\]
The overlap integral \(<c_11s_A|c_21s_B> \) is how much of the 1s orbital atom A occupies the same space as the 1s orbital on atom B. What is size of the area where \(1s_A\) and \(1s_B\) overlap?
Using the overlap integral the simple form for \(<\phi|\phi>\) is
\[<c_11s_A|c_11s_A> + <c_11s_A|c_21s_B> + <c_21s_B|c_11s_A> +<c_21s_B|c_21s_B>\]
\[= c_1^2 + 2c_1c_2S + c_2^2 \label{9}\]
According to the graph as the nuclei become farther apart the overlap approaches zero
In the energy equation the same four terms arise with the Hamiltonian.
\[<\phi|\hat{H}|\phi> = <c_11s_A + c_2 1s_B |\hat{H}|c_11s_A + c_2 1s_B >\]
\[= <c_11s_A|\hat{H}|c_11s_A> + <c_11s_A|\hat{H}|c_21s_B> + <c_21s_B|\hat{H}|c_11s_A> +<c_21s_B|\hat{H}|c_21s_B> \label{10} \]
To simplify the first term we remember that the Hamiltonian is the molecular version:
\[\hat{H} = \dfrac{-1}{2} \bigtriangledown^2 + \dfrac{-1}{r_A} + \dfrac{-1}{r_B} +\dfrac{1}{r_{AB}} \label{11} \]
\[<c_11s_A|\hat{H}|c_11s_A> = <c_11s_A|\dfrac{-1}{2} \bigtriangledown^2 + \dfrac{-1}{r_A} + \dfrac{-1}{r_B} + \dfrac{1}{r_{AB}}|c_11s_A> \label{12}\]
The first two terms of the hamiltonian are the same as atomic hydrogen and can be seperated
\[<c_11s_A|\dfrac{-1}{2} \bigtriangledown^2 + \dfrac{-1}{r_A} + \dfrac{-1}{r_B} + \dfrac{-1}{r_{AB}}|c_11s_A> = <c_11s_A|\hat{H}_{atomic}|c_11s_A> + <c_11s_A|\dfrac{-1}{r_B}|c_11s_A> + <c_11s_A|\dfrac{1}{r_{AB}}|c_11s_A> \label{13}\]
Then since we have hydrogen wave functions we have already solved the energy for the 1s orbital.
\[<c_11s_A|\hat{H}_{atomic}|c_11s_A> + <c_11s_A|\dfrac{-1}{r_B}|c_11s_A> +<c_11s_A|\dfrac{1}{r_{AB}}|c_11s_A> = c_1^2E_{1s_A} + c_1^2<1s_A|\dfrac{-1}{r_B}|1s_A> + <c_11s_A|\dfrac{1}{r_{AB}}|c_11s_A> \label{14}\]
Using the exchange and Coulomb integrals the first term is
\[ = c_1^2E_{1s_A} - c_1^2J + c_1^2\dfrac{1}{r_{AB}} \label{15}\]
Similarly for the second term we have
\[<c_11s_A|\dfrac{-1}{2} \bigtriangledown^2 + \dfrac{-1}{r_A} + \dfrac{-1}{r_B} + \dfrac{1}{r_{AB}}|c_21s_B> = <c_11s_A|\hat{H}_{atomic}|c_21s_B> + <c_11s_A|\dfrac{-1}{r_A}|c_21s_B> + <c_11s_A|\dfrac{1}{r_{AB}}|c_21s_B> \label{16}\]
\[<c_11s_A|\hat{H}_{atomic}|c_21s_B> + <c_11s_A|\dfrac{-1}{r_A}|c_21s_B> + <c_11s_A|\dfrac{1}{r_{AB}}|c_21s_B> \]
\[= c_1c_2E_{1s_B}<1s_A|1s_B> + c_1c_2\dfrac{1}{r_{AB}}<1s_A|1s_B> + c_1c_2<1s_A|\dfrac{-1}{r_A}|1s_B>\]
\[= c_1c_2E_{1s_B}S + c_1c_2\dfrac{1}{r_{AB}}S - c_1c_2K \label{17}\]
Following these same patterns we would have for the third term
\[= c_1c_2E_{1s_A}S + c_1c_2\dfrac{1}{r_{AB}}S - c_1c_2K \label{18}\]
And the fourth term
\[ = c_2^2E_{1s_B} - c_2^2J + c_2^2\dfrac{1}{r_{AB}} \label{19}\]
Now we need to combine all these terms. First realize that the\(E_{1s_B} = E_{1s_A} \) and \(c_1 = c_2 \)
Thus we have
\[E_+ = 2c^2E_{1s}S + 2c^2\dfrac{1}{r_{AB}}S - 2c^2K + 2c^2E_{1s} - 2c^2J + 2c^2\dfrac{1}{r_{AB}} \label{20}\]
And with only two functions we did last week that \(c^2 = \dfrac{1}{2} \)
\[E_+ = E_{1s}S +\dfrac{1}{r_{AB}}S - K + E_{1s} - J + \dfrac{1}{r_{AB}} \label{21}\]
Rearrange them so that it becomes clear
\[E_+ = E_{1s}S + \dfrac{1}{r_{AB}}S + E_{1s} + \dfrac{1}{r_{AB}} - K - J = (1 +S)( E_{1s} + \dfrac{1}{r_{AB}} ) - K - J \label{22}\]
\[\dfrac{E_+}{1+S} = E_{1s} + \dfrac{1}{r_{AB}} - \dfrac{K + J}{1+S} \label{23}\]