Skip to main content
Chemistry LibreTexts

2.6: The Classical Wave Equation (Exercises)

  • Page ID
    142959
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Solutions to select questions can be found online.

    2.1A

    Find the general solutions to the following differential equations:

    1. \(\dfrac{d^{2}y}{dx^{2}} - 4y = 0 \)
    2. \(\dfrac{d^{2}y}{dx^{2}} - 3\dfrac{dy}{dx} - 54y = 0\)
    3. \(\dfrac{d^{2}y}{dx^{2}} + 9y = 0 \)

    2.1B

    Find the general solutions to the following differential equations:

    1. \(\dfrac{d^{2}y}{dx^{2}} - 16y = 0 \)
    2. \(\dfrac{d^{2}y}{dx^{2}} - 6\dfrac{dy}{dx} + 27y = 0\)
    3. \(\dfrac{d^{2}y}{dx^{2}} + 100y = 0 \)

    2.1C

    Find the general solutions to the following differential equations:

    1. \(\dfrac{dy}{dx} - 4\sin(x)y = 0 \)
    2. \(\dfrac{d^{2}y}{dx^{2}} - 5\dfrac{dy}{dx}+6y = 0\)
    3. \(\dfrac{d^{2}y}{dx^{2}} = 0 \)

    2.2A

    Practice solving these first and second order homogeneous differential equations with given boundary conditions:

    1. \(\dfrac{dy}{dx} = ay\) with \(y(0) = 11\)
    2. \(\dfrac{d^2y}{dt^2} = ay\) with \(y(0) = 6\) and \(y'(0) = 4\)
    3. \(\dfrac{d^2y}{dt^2} + \dfrac{dy}{dt} - 42y = 0\) with \(y(0) = 2\) and \(y'(0) = 0\)

    2.3A

    Prove that \(x(t)\) = \(\cos(\theta\)) oscillates with a frequency

    \[\nu = \dfrac{1}{2\pi}\sqrt{\dfrac{k}{m}} \nonumber\]

    Prove that \(x(t)\) = \(\cos(\theta\)) also has a period

    \[T = {2\pi}\sqrt{\dfrac{m}{k}} \nonumber\]

    where \(k\) is the force constant and \(m\) is mass of the body.

    2.3B

    Try to show that

    \[x(t)=\sin(\omega t)\nonumber \]

    oscillates with a frequency

    \[\nu = \omega/2\pi\nonumber \]

    Explain your reasoning. Can you give another function of x(t) that have the same frequency. 

    2.3C

    Which two functions oscillate with the same frequency?

    1. \(x(t)=\cos( \omega t)\)
    2. \(x(t)=\sin (2 \omega t)\)
    3. \(x(t)=A\cos( \omega t)+B\sin( \omega t)\)

    2.3D

    Prove that \(x(t) = \cos(\omega(t))\) oscillates with a frequency

    \[\nu = \dfrac{\omega}{2\pi} \nonumber.\]

    Prove that \(x(t) = A \cos(\omega(t) + B \sin(\omega(t))\) oscillates with the same frequency:

    \[\nu = \dfrac{\omega}{2\pi}. \nonumber\]

    2.4

    Show that the differential equation:

    \[\dfrac{d^2y}{dx^2} + y(x) = 0\nonumber \]

    has a solution

    \[ y(x)= 2\sin x + \cos x \nonumber \]

    2.7

    For a classical harmonic oscillator, the displacement is given by

    \[ \xi (t)=v_0 \sqrt{\dfrac{m}{k}} \sin \sqrt{\dfrac{k}{m}} t\ \nonumber \]

    where \(\xi=x-x_0\). Derive an expression for the velocity as a function of time, and determine the times at which the velocity of the oscillator is zero.

    2.11

    Verify that

    \[Y(x,t) = A \sin \left(\dfrac{2\pi }{\lambda}(x-vt) \right)\nonumber \]

    has a frequency \(\nu\) = \(v\)/\(\lambda\) and wavelength \(\lambda\) traveling right with a velocity \(v\).

    2.13A

    Explain (in words) how to expand the Hamiltonian into two dimensions and use it solve for the energy

    2.13B

    Given that the Schrödinger equation for a two-dimensional box, with sides \(a\) and \(b\), is

    \[\dfrac{∂^2 Ψ}{∂x^2} + \dfrac{∂^2 Ψ}{∂y^2} +\dfrac{(8π^2mE) }{h^2}Ψ(x,y) = 0 \nonumber \]

    and it has the boundary conditions of

    \(Ψ(0,y)= Ψ (a,y)=0\) and \(Ψ(o,x)= Ψ(x,b)=0\)

    for all \(x\) and \(y\) values, show that

    \[E_{2,2}=\left(\dfrac{h^2}{2ma^2}\right)+\left(\dfrac{h^2}{2mb^2}\right). \nonumber\]

    2.14

    Explain, in words, how to expand the Schrödinger Equations into a three-dimensional box

    2.18

    Solving for the differential equation for a pendulum gives us the following equation,

    \[\phi(x)= c_1\cos {\sqrt{\dfrac{g}{L}}} +c_2\sin {\sqrt{\dfrac{g}{L}}} \nonumber \]

    Assuming \(c_1=2\), \(c_3= 5\), \(g=7\) and \(L=3\), what is the position of the pendulum initially? Does this make sense in the real world. Why or why not? (We can ignore units for this problem).

    2.23

    Consider a Particle of mass \(m\) in a one-dimensional box of length \(a\). Its average energy is given by

    \[\langle{E}\rangle = \dfrac{1}{2m}\langle p^2\rangle\nonumber \]

    Because

    \[\langle{p}\rangle\ = 0\nonumber \]

    \[\langle p^2\rangle = \sigma^{2}_{p}\nonumber \]

    where \(\sigma_p\) can be called the uncertainty in \(p\). Using the Uncertainty Principle, show that the energy must be at least as large as \(\hbar/8ma^2\) because \(\sigma_x\), the uncertainty in \(x\), cannot be larger than \(a\).

    2.33

    Prove \(y(x, t) = A\cos[2π/λ(x - vt)]\) is a wave traveling to the right with velocity \(v\), wavelength \(λ\), and period \(λ/v\).


    2.6: The Classical Wave Equation (Exercises) is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?