Skip to main content
Chemistry LibreTexts

Homework 5

  • Page ID
    109912
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Name: ______________________________

    Section: _____________________________

    Student ID#:__________________________

    Q1

    Calculate the standard deviation of the bond length \(\sigma_X\) of the diatomic molecule \(\ce{^1H^{35}Cl }\) when it is in the ground state and first excited state using the quantum harmonic oscillator wavefunctions. The fundamental harmonic vibrational frequency of \(\ce{HCl }\) is 2989.6 \(cm^{-1}\) and the equilibrium bond length is 0.127 nm. How do you interpret the change in the ratio of average bond length to \(\sigma_X\) as a function of energy in the vibration?

    Q2

    What are two requirements for a molecule to absorb IR radiation (via its vibrations)?

    Q3

    Using the relevant transition moment integrals. Demonstrate that the probability of a vibration described by a harmonic oscillator in absorbing IR radiation form the \(v=0\) to the \(v=2\) state is forbidden. Is the \(v=1\) to \(v=0\) transition also forbidden?

    Q4

    Which of the following molecule absorb in the IR?

    1. \(I_2\)
    2. \(O_2\)
    3. \(O_3\)
    4. \(HBr\)
    5. \(HF\)
    6. \(H_2 O\)
    7. \(CD_2\)
    8. \(CO_2\)
    9. \(CH_4\)

    Q5

    What do the presence of overtones in IR spectra reveal about the anharmonicity of the vibration?

    Q6

    What is the energy in cm-1 of a photon of 500 nm energy that may be observed in electron (UV-VIS) spectroscopy? What is the energy of a 6-micron photon typical in IR spectroscopy? What is the energy of a photon absorbed in a typical CO rotation microwave line (\(6 \times 10^{11} Hz\))?

    Q7

    Fill in this table.

    Spectroscopic Signature Degree of Freedom
    Type EM Range Typical Wavelength of Transition Typical Energy of Transition sensitive to electronic transition (yes/no) Sensitive to vibrational transition (yes/no) sensitive to rotational transitions (yes/no)
    UV-Visible
    Infrared
    Microwave

    If any spectroscopy is sensitive to more than one degree of freedom, explain why.

    Q8

    The moment of inertia of \(\ce{^1H^{35}Cl }\) is \(2.6 \times 10^{-47} \;Kg\times m^2\). What is the energy for rotation for \(\ce{^1H^{35}Cl }\) in the \(J=5\) and \(J=20\) states? For a molecule to be thermally excited, the energy of the eigenstate must be comparable to \(k_bT\), with \(k_b\) as the Boltzmann's constant and \(T\) is absolute temperature. What temperature is needed for the \(J=5\) and \(J=20\) rotational states of \(\ce{^1H^{35}Cl }\) to be thermally occupied? (Hint: assuming the term "comparable" is "equal" for this problem).

    Q9

    \(\ce{^1H^{35}Cl }\) has a bond length of 0.12746 nm and fundamental stretching vibration at 2,886 cm-1. What is the temperature required for the \(v=1\) mode to be thermally excited? (Hint: assuming the term "comparable" is "equal" for this problem).

    Q10

    \(\ce{^1H^{19}F}\) has an equilibrium bond length of 91.7 pm and a spring constant of 970 N/m. The molecule rotates freely in a three-dimensional space as a gas.

    1. What is the zero point energy associated with this rotation? Will this differ if you were considering only vibration?
    2. What is the lowest energy microwave transition observed absorbed \(\ce{^1H^{19}F}\) ascribed to rotational motion (assuming a rigid rotor described the rotation)?

    Homework 5 is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?