Skip to main content
Chemistry LibreTexts

Homework 1 Key

  • Page ID
    109898
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    Q1.1

    Rigel:

    λmax T=2.9x10-3 mK

    λmax=145 nm=1.45x10-7 m

    T= (2.9x10-3 mK)/(1.45x10-7m)= 2.00x104 K

    Betelgeuse:

    T= (2.9x10-3 mK)/(7.00x10-7m)= 4.14x103 K

    The surface temperature of Betelgeuse is cooler by an order of magnitude.

    Q1.2

    KE = hν - ϕ

    0 = hν-5.22eV

    5.22eV=(ν)x(4.14x10-15 eV·s)

    ν= 1.26x1015 Hz

    λ= c/ν= (3x108 m/s)/(1.26x1015 Hz)= 2.38x10-7 m= 238 nm

    This falls in the UV region of the electromagnetic spectrum.

    Q1.3

    1) The intensity of light is 40 W, so the energy of the light that shines from the LED for a 1 second period is: 40 W x 1 s = 40 Joules.

    ν= c/λ= (3x108 m/s)/(5.64x10-7 m)= 5.32x1014 Hz

    Ephoton= hν= (6.63×10-34 Js)x(5.32x1014 Hz) = 3.53x10-19 J

    The number of photons emitted per second is: (40 J)/(3.53x10-19 J)= 1.1x1020

    2) The intensity of the radiation is 1200 W, so the energy emitted by the microwave in a 1 second period is: 1200 W x 1 s = 1200 Joules.

    ν= c/λ= (3x108 m/s)/(1.1x10-2 m)= 2.7x1010 Hz

    Ephoton= hν= (6.63×10-34 Js)x(2.7x1010 Hz) = 1.8x10-23 J

    The number of photons emitted per second is: (1200 J)/(1.8x10-23 J)= 6.7x1025

    Q1.4

    a) KE = hν - ϕ

    hν = KE + ϕ = 200eV + 5.0eV = 205eV = hc/λ

    λ = (4.14x10-15 eV s)x(3x108 m/s)/(205eV) = 6.06x10-9 m = 6.06 nm

    b) (6.0 W)x(3600 s) = 21,600 J

    Ephoton= KE + ϕ =(205eV)x(1.6x10-19J/eV)= 3.3x10-17J

    (21,600 J total energy)/(3.3x10-17J per electron)= 6.5x1020 electrons can be ejected in total.

    c) (1.00x10-10J total energy)/(3.3x10-17J per electron)= 3.0x106 electrons can be ejected in total.

    Q1.5

    a) KE = 0 = hν - ϕ

    hν = hc/λ = ϕ

    λ = hc/ϕ = (4.14x10-15 eV s)x(3x108 m/s)/(4.59eV)= 2.7x10-7m= 270 nm

    b) 500 nm is not enough to eject an electron, minimum required energy is 270 nm. \(KE_{impure} = KE_{pure} = 0\). If the wavelength was shorter, the maximum KE for impure C60 will be greater than that for pure C60.

    Q1.6

    a) 3.00 mW= 3.00 mJ/s

    Ephoton= hc/λ =(6.63×10-34 Js)x(3x108 m/s)/(400x10-9m)= 4.97x10-19J

    The number of photons incident per second = the number of electrons ejected per second = (3.00x10-3 J/s)/(4.97x10-19J) = 6.04x1015 electrons ejected per second.

    b) KE = hν - ϕ = 4.97x10-19J - (2.3eV)x(1.6x10-19J/eV)= 1.29x10-19J

    Total power = KE x number of electrons ejected/second = 7.74x10-4 W= 0.774 mW

    Q1.7

    1/λ=RH(1/22 - 1/32)= RH(1/4 - 1/9)= 5RH/36

    λ= 36/5RH = 36/(5x1.1x10-7 m)=7.9x10-7m= 790 nm (655 nm? Julia)

    Q1.8

    Calculate the energy of each photon:

    Ephoton= hν = hc/λ =(6.63×10-34 Js)x(3x108 m/s)/(1.12x104 x10-9m)= 1.77x10-20 J

    Calculate the energy needed to heat 266 g of water by 16 degrees Celsius:

    ΔEwater = mCΔt = (266g)×(4.184 J/g°C)x(16°C) = 1.78x104 J

    The number of photons needed is: ΔEwater / Ephoton = 1.0x1024

    Q1.9

    Cfusionmice = (number of photons) × Ephoton = (number of photons) × hc/λ

    mice = (number of photons) x (hc/λ) x (1/Cfusion) = (4.0x1023)x(6.63×10-34 Js)x(3x108 m/s)/(150x10-9m)x(333.55x103J/kg) = 1.59kg =1590 g

    Mass of each water molecule: (18 g/mol)x(1 mol/NA) = 18 g/6.022x1023 = 2.99x10-23 g

    Therefore the number of water molecules that melted is: mice / mwater molecules = 1590 g / 2.99x10-23 g = 5.32x1025

    Q1.10

    image.png

    The Planck distribution is represented by the solid black line overlaid with red dashes (1) that converges on both sides. The curve for the toast cooked at the ideal temperature would be shifted right (cooler) on a plot versus wavelength; the inverse is true for a plot versus frequency. The line showing the Wien displacement law is represented by 3 (the leftmost dashed lines that diverge), and the Rayleigh-Jeans' Law is represented by 2.

    λmax = b / T= 2.9x10-3 mK / (154+273)K= 6.79x10-6 m= 6790 nm

    Since the highest intensity radiation falls in the IR range of the electromagnetic spectrum (not the visible), the toast itself is not expected to glow. Luckily, this hypothesis is supported by experimental observations.

    (Photo credit: Dr. Koski; powerpoint from 9/29 lecture)


    Homework 1 Key is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?