Homework 4
- Page ID
- 92313
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Name: ______________________________
Section: _____________________________
Student ID#:__________________________
Template:HideTOCQ1
Use the normalization condition to find \(A\) in the following wavefunction:
\[ \psi(x) = Ae^{ikx}e^{-x^2/2a^2}\]
Q2
Find the normalization constant for the wavefunction:
\[
\psi(x)=\left\{
\begin{array}{ll}
C \quad \frac{-c}{4} \leq x \leq \frac{c}{4} \\
0 \qquad \textrm{elsewhere} \\
\end{array}
\right.
\]
Q3
Show that the eigenstates to a particle in a 1D box with infinite potential satify the orthogonormality relationship:
\[ \int_{-\infty}^{\infty} \psi_n^*(x) \psi_m(x)\; dx = 1 \; \text{if } m=n\]
and
\[ \int_{-\infty}^{\infty} \psi_n^*(x) \psi_m(x)\; dx = 0 \; \text{if } m \neq n\]
What is the origin of the first equation?
Q4
A particle of mass \(m\) moves in a one-dimensional box of length \(L\) with boundaries at \(x = 0\) and \(x = L\).
- For any generic wavefunction \(\psi_n(x)\) for this system, calculate the probability that the particle is found somewhere in the region 0 ≤ x ≤ L/4.
- Show how this probability depends on \(n\).
- For what value of n is there the largest probability of finding the particle in 0 ≤ x ≤ L/4?
Q5
Evaluate the following commutators \( [\hat{A}, \hat{B}] \) for the following pair of operators:
- \(\hat{C}\) and \([\hat{D},\hat{C}]\hat{E} \)
- \(\frac{d}{dy}-y\) and \(\frac{d}{dy}+y \)
- \(\frac{d}{dy}\) and \(\int_{0}^{y} dy \)
- \( \frac{d^2}{dy^2}\) and \(y \)
- \(2\) and \(\frac{d}{dy} \)
Q6
For the following molecules identify the number of
- degrees of freedom,
- translational degrees of freedom
- rotational degrees of freedom
- vibrational degrees of freedom
- \(SF_6\)
- \(CO_2\)
- \(O_2\)
- \(C_{60}\)
- \(Ar\)
Q7
At what point(s) during the oscillation of a spring that obey's Hooke's law is the force on the mass the greatest?
Q8
The wavefunctions for the quantum mechanical harmonic oscillator \(| \psi_v \rangle\) in atomic units with \(\alpha = 1 \) are expressed as
\[ | \psi_v \rangle = N_v H_v e^{-(x-x_o)^2/2} \]
with
- \(x_o\) is the equilibrium position of the oscillator
- \(N_v\) is a normalization factor for a specific \(v\) value
- \(H_v\) is the Hermite polynomial for a specific \(v\) value (see Table M1)
What is the wavefunction (with determined normalization factor) for the harmonic oscillator in the \(v=0\) state?
Q9
Calculate the mean displacement of the oscillator \(x\) from equilibrium when the oscillator is in the \(v=0\) and \(v=1\) quantum states? Explain the differences in your own words.
Q10
Calculate the mean displacement squared (\(\langle x^2 \rangle\)) of the oscillator \(x\) from equilibrium when the oscillator is in the \(v=0\) and \(v=1\) quantum states? Explain the differences in your own words.
Q11
Use the answers from Q9 and Q10 to determined the uncertainty of position of a particle following the harmonic oscillator with \(v=0\)?
Q12
For a harmonic oscillator with a mass of \(1.21 \times 10^{-25} \;kg\), the energy levels are separated by \(4.82 \times 10^{-21}\; J\). What is the force constant for the oscillator? What is the zero point energy of this oscillator?
Q13
What are two requirements for a molecule to absorb IR radiation (via its vibrations)?
Q14
Demonstrate that the probability of a vibration described by a harmonic oscillator in absorbing IR radiation form the \(v=0\) to the \(v=2\) state is forbidden. Is the \(v=1\) to \(v=0\) transition also forbidden? You will need to solve the relevant transition moment integrals for both parts of this question.
Q15
Which of the following molecule absorb in the IR?
- \(I_2\)
- \(HBr\)
- \(CD_2\)
- \(CO_2\)
- \(CH_4\)
Q16
What do the presence of overtones in IR spectra reveal about the anharmonicity of the vibration?