Skip to main content

# 17.3: We Postulate That the Average Ensemble Energy Is Equal to the Observed Energy of a System

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\avec}{\mathbf a}$$ $$\newcommand{\bvec}{\mathbf b}$$ $$\newcommand{\cvec}{\mathbf c}$$ $$\newcommand{\dvec}{\mathbf d}$$ $$\newcommand{\dtil}{\widetilde{\mathbf d}}$$ $$\newcommand{\evec}{\mathbf e}$$ $$\newcommand{\fvec}{\mathbf f}$$ $$\newcommand{\nvec}{\mathbf n}$$ $$\newcommand{\pvec}{\mathbf p}$$ $$\newcommand{\qvec}{\mathbf q}$$ $$\newcommand{\svec}{\mathbf s}$$ $$\newcommand{\tvec}{\mathbf t}$$ $$\newcommand{\uvec}{\mathbf u}$$ $$\newcommand{\vvec}{\mathbf v}$$ $$\newcommand{\wvec}{\mathbf w}$$ $$\newcommand{\xvec}{\mathbf x}$$ $$\newcommand{\yvec}{\mathbf y}$$ $$\newcommand{\zvec}{\mathbf z}$$ $$\newcommand{\rvec}{\mathbf r}$$ $$\newcommand{\mvec}{\mathbf m}$$ $$\newcommand{\zerovec}{\mathbf 0}$$ $$\newcommand{\onevec}{\mathbf 1}$$ $$\newcommand{\real}{\mathbb R}$$ $$\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}$$ $$\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}$$ $$\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}$$ $$\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}$$ $$\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}$$ $$\newcommand{\laspan}[1]{\text{Span}\{#1\}}$$ $$\newcommand{\bcal}{\cal B}$$ $$\newcommand{\ccal}{\cal C}$$ $$\newcommand{\scal}{\cal S}$$ $$\newcommand{\wcal}{\cal W}$$ $$\newcommand{\ecal}{\cal E}$$ $$\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}$$ $$\newcommand{\gray}[1]{\color{gray}{#1}}$$ $$\newcommand{\lgray}[1]{\color{lightgray}{#1}}$$ $$\newcommand{\rank}{\operatorname{rank}}$$ $$\newcommand{\row}{\text{Row}}$$ $$\newcommand{\col}{\text{Col}}$$ $$\renewcommand{\row}{\text{Row}}$$ $$\newcommand{\nul}{\text{Nul}}$$ $$\newcommand{\var}{\text{Var}}$$ $$\newcommand{\corr}{\text{corr}}$$ $$\newcommand{\len}[1]{\left|#1\right|}$$ $$\newcommand{\bbar}{\overline{\bvec}}$$ $$\newcommand{\bhat}{\widehat{\bvec}}$$ $$\newcommand{\bperp}{\bvec^\perp}$$ $$\newcommand{\xhat}{\widehat{\xvec}}$$ $$\newcommand{\vhat}{\widehat{\vvec}}$$ $$\newcommand{\uhat}{\widehat{\uvec}}$$ $$\newcommand{\what}{\widehat{\wvec}}$$ $$\newcommand{\Sighat}{\widehat{\Sigma}}$$ $$\newcommand{\lt}{<}$$ $$\newcommand{\gt}{>}$$ $$\newcommand{\amp}{&}$$ $$\definecolor{fillinmathshade}{gray}{0.9}$$

We will be restricting ourselves to the canonical ensemble (constant temperature and constant pressure). Consider a collection of $$N$$ molecules. The probability of finding a molecule with energy $$E_i$$ is equal to the fraction of the molecules with energy $$E_i$$. That is, in a collection of $$N$$ molecules, the probability of the molecules having energy $$E_i$$:

$P_i = \dfrac{n_i}{N} \nonumber$

This is the directly obtained from the Boltzmann distribution, where the fraction of molecules $$n_i /N$$ having energy $$E_i$$ is:

$P_i = \dfrac{n_i}{N} = \dfrac{e^{-E_i/kT}}{Q} \label{BD1}$

The average energy is obtained by multiplying $$E_i$$ with its probability and summing over all $$i$$:

$\langle E \rangle = \sum_i E_i P_i \label{Mean1}$

Equation $$\ref{Mean1}$$ is the standard average over a distribution commonly found in quantum mechanics as expectation values. The quantum mechanical version of this Equation is

$\langle \psi | \hat{H} | \psi \rangle \nonumber$

where $$\Psi^2$$ is the distribution function that the Hamiltonian operator (e.g., energy) is averaged over; this equation is also the starting point in the Variational method approximation.

Equation $$\ref{Mean1}$$ can be solved by plugging in the Boltzmann distribution (Equation $$\ref{BD1}$$):

$\langle E \rangle = \sum_i{ \dfrac{E_ie^{-E_i/ kT}}{Q}} \label{Eq1}$

Where $$Q$$ is the partition function:

$Q = \sum_i{e^{-\dfrac{E_i}{kT}}} \nonumber$

We can take the derivative of $$\ln{Q}$$ with respect to temperature, $$T$$:

$\left(\dfrac{\partial \ln{Q}}{\partial T}\right) = \dfrac{1}{kT^2}\sum_i{\dfrac{E_i e^{-E_i/kT}}{Q}} \label{Eq2}$

Comparing Equation $$\ref{Eq1}$$ with $$\ref{Eq2}$$, we obtain:

$\langle E \rangle = kT^2 \left(\dfrac{\partial \ln{Q}}{\partial T}\right) \nonumber$

It is common to write these equations in terms of $$\beta$$, where:

$\beta = \dfrac{1}{kT} \nonumber$

The partition function becomes:

$Q = \sum_i{e^{-\beta E_i}} \nonumber$

We can take the derivative of $$\ln{Q}$$ with respect to $$\beta$$:

$\left(\dfrac{\partial \ln{Q}}{\partial\beta}\right) = -\sum_i{\dfrac{E_i e^{-\beta E_i}}{Q}} \nonumber$

And obtain:

$\langle E \rangle = -\left(\dfrac{\partial \ln{Q}}{\partial\beta}\right) \nonumber$

Replacing $$1/kT$$ with $$\beta$$ often simplifies the math and is easier to use.

It is not uncommon to find the notation changes: $$Z$$ instead of $$Q$$ and $$\bar{E}$$ instead of $$\langle E \rangle$$.

17.3: We Postulate That the Average Ensemble Energy Is Equal to the Observed Energy of a System is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

• Was this article helpful?