Solutions 2
- Page ID
- 47370
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Q1.1
Calculate the mean free path and the binary number of collisions per liter per second between Ar atoms at 298 K and 1.00 atm. Use 3.62 Å as the collision diameter of the Ar molecules. Assume ideal gas behavior.
S1.1
Calculate the mean free path
Step 1: Calculate \(\frac{N}{V}\)
\[PV=NRT=\frac{N}{N_A}RT\]
\[\dfrac{N}{V}=\dfrac{PN_A}{RT}=\dfrac{(1atm)(6.022\times 10^{23}mol^{-1})}{(0.08206L\,atm\,K^{-1}mol^{-1})(298K)}=2.46\times 10^{22}L^{-1}=2.46\times10^{25}m^{-3}\]
Step 2: Calculate the mean free path
\[\lambda=\dfrac{1}{\sqrt{2}\pi d^{2}(\dfrac{N}{V})}=\dfrac{1}{\sqrt{2}\pi (3.62\times 10^{-10}m)^{2}(2.46\times 10^{25}m^{-3})}=6.982\times 10^{-8}m\]
Calculate the binary number of collisions
Step 3: Calculate the average molecular speed
\[\bar{C}=\sqrt{\dfrac{8RT}{\pi M}}=\sqrt{\dfrac{8(8.3145JK^{-1}mol^{-1}(298K)}{\pi (39.948\times 10^{-3}\dfrac{kg}{mol})}}=397.419 m/s\]
Step 4: Calculate the binary # of collisions and convert the unit to $$L^{-1}s^{-1}
\[z_{11}=\dfrac{\sqrt{2}}{2}\pi d^2\bar{C}(\dfrac{N}{V})^{2}= \dfrac{\sqrt{2}}{2}\pi (3.62\times 10^{-10}m)^{2}(397.419ms^{-1})(2.46\times10^{25}m^{-3})^{2}(\dfrac{1m^{3}}{1000L})=7.0012\times10^{31} L^{-1}s^{-1} \]
Q1.2
For molecular oxygen at \(56^{o}C\), calculate the number of collisions a single molecule makes in 1 second and the total number of binary collisions at P=1.0 atm and P=0.25 atm. How does pressure relate to these two quantities? The collision diameter of oxygen is 3.02 A.
S1.2
Step 1: Average molecular speed
\[\bar{C}=\sqrt{\dfrac{8RT}{\pi M}}=\sqrt{\dfrac{8(8.3145JK^{-1}mol^{-1}(273.15+56)K)}{\pi (32\times 10^{-3}\dfrac{kg}{mol})}}=466.67 m/s\]
Step 2: Calculate \(\frac{N}{V}\) at P= 1 atm
\[PV=NRT=\frac{N}{N_A}RT\]
\[\dfrac{N}{V}=\dfrac{PN_A}{RT}=\dfrac{(1atm)(6.022\times 10^{23}mol^{-1})}{(0.08206L\,atm\,K^{-1}mol^{-1})(329.15K)}=2.2295\times 10^{22}L^{-1}=2.2295\times10^{25}m^{-3}\]
Step 3:Calculate the number of collisions a single molecule makes in 1 second at P=1 atm
\[z_{1}=\sqrt{2}\pi d^2\bar{C}\dfrac{N}{V}= \sqrt{2}\pi (3.02\times 10^{-10}m)^{2}(466.67ms^{-1})(2.2295\times10^{25}m^{-3})^{2}=4.216\times10^{9}s^{-1} \]
Step 4: Calculate the binary number of collisions at P=1 atm
\[z_{11}=\dfrac{\sqrt{2}}{2}\pi d^2\bar{C}(\dfrac{N}{V})^{2}= \dfrac{\sqrt{2}}{2}\pi (3.02\times 10^{-10}m)^{2}(466.67ms^{-1})(2.2295\times10^{25}m^{-3})^{2}=4.6697\times10^{34} L^{-1}s^{-1} \]
Step 5: Calculate the number of collisions a single molecule makes in a second at P=0.25 atm
\[\dfrac{N}{V}=\dfrac{PN_A}{RT}=\dfrac{(0.25atm)(6.022\times 10^{23}mol^{-1})}{(0.08206L\,atm\,K^{-1}mol^{-1})(329.15K)}=5.574\times10^{24}m^{-3}\]
\[z_{1}=\sqrt{2}\pi d^2\bar{C}\dfrac{N}{V}=1.054\times10^{9}s^{-1} \]
Step 6: Calculate the binary number of collisions at P=0.25 atm
\[z_{11}=\dfrac{\sqrt{2}}{2}\pi d^2\bar{C}(\dfrac{N}{V})^{2}=2.9186\times10^{33} m^{-3}s^{-1} \]
Step 7: relationship between pressure and these two quantities
\[z_{1}=\sqrt{2}\pi d^2\bar{C}\dfrac{N}{V}=\sqrt{2}\pi d^2\bar{C}\dfrac{PN_A}{RT}\]
\[z_{11}=\dfrac{\sqrt{2}}{2}\pi d^2\bar{C}(\dfrac{N}{V})^{2}(\dfrac{PN_A}{RT})^2\]
Therefore, \(z_{1}\) is proportional to pressure, \(z_{11}\) is proportional to pressure squared.
Q1.3
If gas 1 has a molar mass of 72 g/mol and gas 2 has a molar mass of 2 g/mol. How much faster or slower does gas 2 effuse from a small opening than gas 1 at the same temperature?
S1.3
\[\dfrac{r_{1}}{r_{2}}=\sqrt{\dfrac{M_{1}}{M_{2}}}=\sqrt{\dfrac{2g/mol}{72g/mol}}=\dfrac{1}{6}\]
Therefore, gas 2 effuses at 6 times the rate of gas 1.
Q1.4
Write the rate of reaction in terms of the rate of disappearance of reactant and the rate of formation of products:
- \(NO_{(g)} + O_{3 (g)} \rightarrow NO_{2(g)} + O_{2(g)}\)
- \(2C_2H_{6 (g)} + 7O_{2(g)} \rightarrow 4 CO_{2(g)} + 6 H_2O_{(aq)}\)
- \(H_{2 (g)} + I_{2 (g)} \rightarrow 2HI_{(g)} \)
- \(4OH_{(g)} + H_2S_{(g)} \rightarrow SO_{2(g)} + 2H_2O_{(aq)} + H_{2(g)}\)
S1.4
a. Ans:
In terms of the rate of disappearance of reactants:
$$rate=-\dfrac{d[NO]}{dt}=-\dfrac{d[O_{3}]}{dt}\]
In terms of the rate of formation of products:
$$rate=\dfrac{d[NO_{2}]}{dt}=\dfrac{d[O_{2}]}{dt}\]
b. Ans:
In terms of the rate of disappearance of reactants:
$$rate=-\dfrac{1}{2}\dfrac{d[C_{2}H_{6}]}{dt}=-\dfrac{1}{7}\dfrac{d[O_{2}]}{dt}\]
In terms of the rate of formation of products:
$$rate=\dfrac{1}{4}\dfrac{d[CO_{2}]}{dt}\]
c. Ans:
In terms of the rate of disappearance of reactants:
$$rate=-\dfrac{d[H_{2}]}{dt}=-\dfrac{d[I_{2}]}{dt}\]
In terms of the rate of formation of products:
$$rate=\dfrac{1}{2}\dfrac{d[HI]}{dt}\]
d. Ans:
In terms of the rate of disappearance of reactants:
$$rate=-\dfrac{1}{4}\dfrac{d[OH]}{dt}=-\dfrac{d[H_{2}S]}{dt}\]
In terms of the rate of formation of products:
$$rate=\dfrac{d[SO_{2}]}{dt}=\dfrac{[H_{2}]}{dt}\]
Q1.5
Determine the value of the rate constant for the (elementary) reaction:
\[I_{2(g)} + H_{2 (g)} \rightarrow 2HI_{(aq)}\]
If the [I2] = 0.15 M, [H2] = 0.2M, and the rate of reaction is 0.005 M s-1 at 298 K.
S1.5
Assuming this is elementary reaction and the reaction rate can be expressed as:
$$rate=k[Br_{2}][H_{2}]\]
Then the rate constant k is:
$$k=\dfrac{rate}{[Br_{2}][H_{2}]}=\dfrac{0.005M s^{-1}}{0.15M 0.2M}=0.1667 M^{-1} s^{-1}\]
Q1.6
What are the units of the rate constant for a second-order reaction?
S1.6
For a second order reaction,
$$rate=k[A]^{2}\]
So $$k=\dfrac{rate}{[A]^{2}}\]
The unit of the reaction rate is: \(M s^{-1}\)
The unit of the concentration of reactant A is: M
Therefore, the unit of the rate constant k is:
\[\dfrac{M s^{-1}}{M^{2}}=M^{-1} s^{-1}\]
Q1.7
Derive the half-life formula for the 0th, 1st, and 2nd order kinetics.
S1.7
For 0th order reaction:
The rate of reaction is:
$$-\dfrac{d[A]}{dt}=k[A]^{0}=k\]
So,
$$d[A]=-k dt\]
Integrate on both sides,
\[\int_{[A]_{0}}^{[A]} d[A] = - \int_{0}^{t} kdt \]
Then, solve for \([A]\). This provides the integrated form of the rate law.
\[[A] = [A]_0 -kt \]
The integrated form of the rate law allows us to find the population of reactant at any time after the start of the reaction.
To find \(t_{1/2}\), we can plug in \([A]=[A]_{0}\) in the equation and solve for \(t_{1/2}\).
\[ \dfrac{1}{2}[A]_{0}=[A]_{0}-kt_{1/2} \]
We get
\[ t_{1/2}=\dfrac{[A]_{0}}{2k}\]
For 1st order reaction:
The rate of reaction is:
\[-\dfrac{d[A]}{dt}k[A]\]
Rearrange it, we get:
\[\dfrac{d[A]}{[A]}=-k dt\]
\[\int_{[A]_{0}}^{[A]} \dfrac{d[A]}{[A]}=-\int_{0}^{t} kdt\]
\[ln\dfrac{[A]}{[A]_{0}}=-kt\]
\[[A]=[A]_{0} e^{-kt}\]
To find \(t_{1/2}\), we can plug in \([A]=[A]_{0}\) in the equation and solve for \(t_{1/2}\).
\[\dfrac{1}{2}[A]_{0}=[A]_{0} e^{-kt_{1/2}}\]
Take the natural log on both sides,
\[ln(\dfrac{1}{2})=ln(e^{-kt_{1/2}})=-kt_{1/2}\]
We get
\[ t_{1/2}=\dfrac{ln2}{k}\]
For 2nd order reaction:
The rate of reaction is:
\[-\dfrac{d[A]}{dt}=k[A]^{2}\]
Rearrange and integrate on both sides,
\[ \int_{[A]}^{[A]_{0}}\dfrac{d[A]}{[A]^{2}}=-\int_{0}^{t} kdt\]
\[-(\dfrac{1}{[A]}-\dfrac{1}{[A]_{0}})=\dfrac{1}{[A]_{0}}-\dfrac{1}{[A]}=-kt\]
So
\[\dfrac{1}{[A]}=\dfrac{1}{[A]_{0}}+kt\]
To find \(t_{1/2}\), we can plug in \([A]=[A]_{0}\) in the equation and solve for \(t_{1/2}\).
\[\dfrac{2}{[A]_{0}}=\dfrac{1}{[A]_{0}}+kt_{1/2}\]
We get
\[t_{1/2}=\dfrac{1}{k[A]_{0}}\]