Skip to main content
Chemistry LibreTexts

Solutions 2

  • Page ID
    47370
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    Q1.1

    Calculate the mean free path and the binary number of collisions per liter per second between Ar atoms at 298 K and 1.00 atm. Use 3.62 Å as the collision diameter of the Ar molecules. Assume ideal gas behavior.

    S1.1

    Calculate the mean free path

    Step 1: Calculate \(\frac{N}{V}\)

    \[PV=NRT=\frac{N}{N_A}RT\]

    \[\dfrac{N}{V}=\dfrac{PN_A}{RT}=\dfrac{(1atm)(6.022\times 10^{23}mol^{-1})}{(0.08206L\,atm\,K^{-1}mol^{-1})(298K)}=2.46\times 10^{22}L^{-1}=2.46\times10^{25}m^{-3}\]

    Step 2: Calculate the mean free path

    \[\lambda=\dfrac{1}{\sqrt{2}\pi d^{2}(\dfrac{N}{V})}=\dfrac{1}{\sqrt{2}\pi (3.62\times 10^{-10}m)^{2}(2.46\times 10^{25}m^{-3})}=6.982\times 10^{-8}m\]

    Calculate the binary number of collisions

    Step 3: Calculate the average molecular speed

    \[\bar{C}=\sqrt{\dfrac{8RT}{\pi M}}=\sqrt{\dfrac{8(8.3145JK^{-1}mol^{-1}(298K)}{\pi (39.948\times 10^{-3}\dfrac{kg}{mol})}}=397.419 m/s\]

    Step 4: Calculate the binary # of collisions and convert the unit to $$L^{-1}s^{-1}

    \[z_{11}=\dfrac{\sqrt{2}}{2}\pi d^2\bar{C}(\dfrac{N}{V})^{2}= \dfrac{\sqrt{2}}{2}\pi (3.62\times 10^{-10}m)^{2}(397.419ms^{-1})(2.46\times10^{25}m^{-3})^{2}(\dfrac{1m^{3}}{1000L})=7.0012\times10^{31} L^{-1}s^{-1} \]

    Q1.2

    For molecular oxygen at \(56^{o}C\), calculate the number of collisions a single molecule makes in 1 second and the total number of binary collisions at P=1.0 atm and P=0.25 atm. How does pressure relate to these two quantities? The collision diameter of oxygen is 3.02 A.

    S1.2

    Step 1: Average molecular speed

    \[\bar{C}=\sqrt{\dfrac{8RT}{\pi M}}=\sqrt{\dfrac{8(8.3145JK^{-1}mol^{-1}(273.15+56)K)}{\pi (32\times 10^{-3}\dfrac{kg}{mol})}}=466.67 m/s\]

    Step 2: Calculate \(\frac{N}{V}\) at P= 1 atm

    \[PV=NRT=\frac{N}{N_A}RT\]

    \[\dfrac{N}{V}=\dfrac{PN_A}{RT}=\dfrac{(1atm)(6.022\times 10^{23}mol^{-1})}{(0.08206L\,atm\,K^{-1}mol^{-1})(329.15K)}=2.2295\times 10^{22}L^{-1}=2.2295\times10^{25}m^{-3}\]

    Step 3:Calculate the number of collisions a single molecule makes in 1 second at P=1 atm

    \[z_{1}=\sqrt{2}\pi d^2\bar{C}\dfrac{N}{V}= \sqrt{2}\pi (3.02\times 10^{-10}m)^{2}(466.67ms^{-1})(2.2295\times10^{25}m^{-3})^{2}=4.216\times10^{9}s^{-1} \]

    Step 4: Calculate the binary number of collisions at P=1 atm

    \[z_{11}=\dfrac{\sqrt{2}}{2}\pi d^2\bar{C}(\dfrac{N}{V})^{2}= \dfrac{\sqrt{2}}{2}\pi (3.02\times 10^{-10}m)^{2}(466.67ms^{-1})(2.2295\times10^{25}m^{-3})^{2}=4.6697\times10^{34} L^{-1}s^{-1} \]

    Step 5: Calculate the number of collisions a single molecule makes in a second at P=0.25 atm

    \[\dfrac{N}{V}=\dfrac{PN_A}{RT}=\dfrac{(0.25atm)(6.022\times 10^{23}mol^{-1})}{(0.08206L\,atm\,K^{-1}mol^{-1})(329.15K)}=5.574\times10^{24}m^{-3}\]

    \[z_{1}=\sqrt{2}\pi d^2\bar{C}\dfrac{N}{V}=1.054\times10^{9}s^{-1} \]

    Step 6: Calculate the binary number of collisions at P=0.25 atm

    \[z_{11}=\dfrac{\sqrt{2}}{2}\pi d^2\bar{C}(\dfrac{N}{V})^{2}=2.9186\times10^{33} m^{-3}s^{-1} \]

    Step 7: relationship between pressure and these two quantities

    \[z_{1}=\sqrt{2}\pi d^2\bar{C}\dfrac{N}{V}=\sqrt{2}\pi d^2\bar{C}\dfrac{PN_A}{RT}\]

    \[z_{11}=\dfrac{\sqrt{2}}{2}\pi d^2\bar{C}(\dfrac{N}{V})^{2}(\dfrac{PN_A}{RT})^2\]

    Therefore, \(z_{1}\) is proportional to pressure, \(z_{11}\) is proportional to pressure squared.

    Q1.3

    If gas 1 has a molar mass of 72 g/mol and gas 2 has a molar mass of 2 g/mol. How much faster or slower does gas 2 effuse from a small opening than gas 1 at the same temperature?

    S1.3

    \[\dfrac{r_{1}}{r_{2}}=\sqrt{\dfrac{M_{1}}{M_{2}}}=\sqrt{\dfrac{2g/mol}{72g/mol}}=\dfrac{1}{6}\]

    Therefore, gas 2 effuses at 6 times the rate of gas 1.

    Q1.4

    Write the rate of reaction in terms of the rate of disappearance of reactant and the rate of formation of products:

    1. \(NO_{(g)} + O_{3 (g)} \rightarrow NO_{2(g)} + O_{2(g)}\)
    2. \(2C_2H_{6 (g)} + 7O_{2(g)} \rightarrow 4 CO_{2(g)} + 6 H_2O_{(aq)}\)
    3. \(H_{2 (g)} + I_{2 (g)} \rightarrow 2HI_{(g)} \)
    4. \(4OH_{(g)} + H_2S_{(g)} \rightarrow SO_{2(g)} + 2H_2O_{(aq)} + H_{2(g)}\)

    S1.4

    a. Ans:

    In terms of the rate of disappearance of reactants:

    $$rate=-\dfrac{d[NO]}{dt}=-\dfrac{d[O_{3}]}{dt}\]

    In terms of the rate of formation of products:

    $$rate=\dfrac{d[NO_{2}]}{dt}=\dfrac{d[O_{2}]}{dt}\]

    b. Ans:

    In terms of the rate of disappearance of reactants:

    $$rate=-\dfrac{1}{2}\dfrac{d[C_{2}H_{6}]}{dt}=-\dfrac{1}{7}\dfrac{d[O_{2}]}{dt}\]

    In terms of the rate of formation of products:

    $$rate=\dfrac{1}{4}\dfrac{d[CO_{2}]}{dt}\]

    c. Ans:

    In terms of the rate of disappearance of reactants:

    $$rate=-\dfrac{d[H_{2}]}{dt}=-\dfrac{d[I_{2}]}{dt}\]

    In terms of the rate of formation of products:

    $$rate=\dfrac{1}{2}\dfrac{d[HI]}{dt}\]

    d. Ans:

    In terms of the rate of disappearance of reactants:

    $$rate=-\dfrac{1}{4}\dfrac{d[OH]}{dt}=-\dfrac{d[H_{2}S]}{dt}\]

    In terms of the rate of formation of products:

    $$rate=\dfrac{d[SO_{2}]}{dt}=\dfrac{[H_{2}]}{dt}\]

    Q1.5

    Determine the value of the rate constant for the (elementary) reaction:

    \[I_{2(g)} + H_{2 (g)} \rightarrow 2HI_{(aq)}\]

    If the [I2] = 0.15 M, [H2] = 0.2M, and the rate of reaction is 0.005 M s-1 at 298 K.

    S1.5

    Assuming this is elementary reaction and the reaction rate can be expressed as:

    $$rate=k[Br_{2}][H_{2}]\]

    Then the rate constant k is:

    $$k=\dfrac{rate}{[Br_{2}][H_{2}]}=\dfrac{0.005M s^{-1}}{0.15M 0.2M}=0.1667 M^{-1} s^{-1}\]

    Q1.6

    What are the units of the rate constant for a second-order reaction?

    S1.6

    For a second order reaction,

    $$rate=k[A]^{2}\]

    So $$k=\dfrac{rate}{[A]^{2}}\]

    The unit of the reaction rate is: \(M s^{-1}\)

    The unit of the concentration of reactant A is: M

    Therefore, the unit of the rate constant k is:

    \[\dfrac{M s^{-1}}{M^{2}}=M^{-1} s^{-1}\]

    Q1.7

    Derive the half-life formula for the 0th, 1st, and 2nd order kinetics.

    S1.7

    For 0th order reaction:

    The rate of reaction is:

    $$-\dfrac{d[A]}{dt}=k[A]^{0}=k\]

    So,

    $$d[A]=-k dt\]

    Integrate on both sides,

    \[\int_{[A]_{0}}^{[A]} d[A] = - \int_{0}^{t} kdt \]

    Then, solve for \([A]\). This provides the integrated form of the rate law.

    \[[A] = [A]_0 -kt \]

    The integrated form of the rate law allows us to find the population of reactant at any time after the start of the reaction.

    To find \(t_{1/2}\), we can plug in \([A]=[A]_{0}\) in the equation and solve for \(t_{1/2}\).

    \[ \dfrac{1}{2}[A]_{0}=[A]_{0}-kt_{1/2} \]

    We get

    \[ t_{1/2}=\dfrac{[A]_{0}}{2k}\]

    For 1st order reaction:

    The rate of reaction is:

    \[-\dfrac{d[A]}{dt}k[A]\]

    Rearrange it, we get:

    \[\dfrac{d[A]}{[A]}=-k dt\]

    \[\int_{[A]_{0}}^{[A]} \dfrac{d[A]}{[A]}=-\int_{0}^{t} kdt\]

    \[ln\dfrac{[A]}{[A]_{0}}=-kt\]

    \[[A]=[A]_{0} e^{-kt}\]

    To find \(t_{1/2}\), we can plug in \([A]=[A]_{0}\) in the equation and solve for \(t_{1/2}\).

    \[\dfrac{1}{2}[A]_{0}=[A]_{0} e^{-kt_{1/2}}\]

    Take the natural log on both sides,

    \[ln(\dfrac{1}{2})=ln(e^{-kt_{1/2}})=-kt_{1/2}\]

    We get

    \[ t_{1/2}=\dfrac{ln2}{k}\]

    For 2nd order reaction:

    The rate of reaction is:

    \[-\dfrac{d[A]}{dt}=k[A]^{2}\]

    Rearrange and integrate on both sides,

    \[ \int_{[A]}^{[A]_{0}}\dfrac{d[A]}{[A]^{2}}=-\int_{0}^{t} kdt\]

    \[-(\dfrac{1}{[A]}-\dfrac{1}{[A]_{0}})=\dfrac{1}{[A]_{0}}-\dfrac{1}{[A]}=-kt\]

    So

    \[\dfrac{1}{[A]}=\dfrac{1}{[A]_{0}}+kt\]

    To find \(t_{1/2}\), we can plug in \([A]=[A]_{0}\) in the equation and solve for \(t_{1/2}\).

    \[\dfrac{2}{[A]_{0}}=\dfrac{1}{[A]_{0}}+kt_{1/2}\]

    We get

    \[t_{1/2}=\dfrac{1}{k[A]_{0}}\]


    Solutions 2 is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?