# 5.6: Rotary Evaporation

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

The preferred method for solvent removal in the laboratory is by use of a rotary evaporator (also known as a "rotovap"). A rotary evaporator is essentially a reduced pressure distillation: a solution in a round bottomed flask is placed in the water bath of the apparatus, and rotated while the system is partially evacuated (by a water aspirator or vacuum pump). The reduced pressure in the apparatus causes the solvent to boil at a lower temperature than normal, and rotating the flask increases the liquid's surface area and thus the rate of evaporation.

• 5.6A: Overview of Rotary Evaporation
It is very common for a desired compound to be dissolved in a solvent during regular manipulations in the laboratory. The preferred method for solvent removal in the laboratory is by use of a rotary evaporator, also known as a "rotovap". A rotary evaporator is essentially a reduced pressure distillation: a solution in a round bottomed flask is placed in the water bath of the apparatus , and rotated while the system is partially evacuated (by a water aspirator or vacuum pump).
• 5.6B: Step-by-Step Procedures for Rotary Evaporation
• 5.6C: Troubleshooting Rotary Evaporation
If the solvent fails to boil on the rotary evaporator even after one minute, consider whether a mistake may have been made. For example, it may be that you are trying to evaporate the aqueous layer from a separatory funnel step instead of the organic layer. Alternatively, the water bath may need to be heated to a higher temperature depending on the boiling point of the solvent.