Skip to main content
Chemistry LibreTexts

2.7: Solution of the Dirac equation for a free particle

  • Page ID
    20886
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The Dirac Hamiltonian takes the form

    \begin{displaymath}
H = c\stackrel{\rightarrow}{\alpha}\cdot{\bf P}+ \beta mc^2
\end{displaymath}

    where

    \begin{displaymath}
\stackrel{\rightarrow}{\alpha}= \left(\matrix{ & 0 & & \stac...
...rix{& {\rm I} & & 0 & \cr & & & \cr & 0 & & -{\rm I} &}\right)
\end{displaymath}

    Using \({\bf P}= (\hbar/i)\nabla\), in the coordinate basis, the Dirac equation for a free particle reads

    \begin{displaymath}
\left[-i\hbar c\stackrel{\rightarrow}{\alpha}\cdot\nabla + \...
...i({\bf r},) = i\hbar{\partial \over
\partial t}\Psi({\bf r},t)
\end{displaymath}

    Since the operator on the left side is a 4\(\times\)4 matrix, the wave function \(\Psi({\bf r},t)\) is actually a four-component vector of functions of \({\bf r}\) and \(t\):

    \begin{displaymath}
\Psi({\bf r},t) = \left(\matrix{ \Psi_1({\bf r},t) \cr \Psi_2({\bf r},t) \cr \Psi_3({\bf r},t) \cr
\Psi_4({\bf r},t)}\right)
\end{displaymath}

    which is called a four-component Dirac spinor. In order to generate an eigenvalue problem, we look for a solution of the form

    \begin{displaymath}
\Psi({\bf r},t) = \psi({\bf r})e^{-iEt/\hbar}
\end{displaymath}

    which, when substituted into the Dirac equation gives the eigenvalue equation

    \begin{displaymath}
\left[-i\hbar c\stackrel{\rightarrow}{\alpha}\cdot\nabla + \beta mc^2\right]\psi({\bf r}) = E\psi({\bf r})
\end{displaymath}

    Note that, since \(H\) is only a function of \({\bf P}\), then \([{\bf P},H]=0\) so that the eigenvalues \({\bf p}\) of \({\bf P}\) can be used to characterize the states. In particular, we look for free-particle (plane-wave) solutions of the form:

    \begin{displaymath}
\psi_{{\bf p}}({\bf r}) = u_{{\bf p}}e^{i{\bf p}\cdot{\bf r}/\hbar}
\end{displaymath}

    where \(u_

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/p[8]/span, line 1, column 1
    
    \) is a four-component vector which satisfies

    \begin{displaymath}
\left[c\stackrel{\rightarrow}{\alpha}\cdot{\bf p}+ \beta mc^2\right]u_{{\bf p}} = Eu_{{\bf p}}
\end{displaymath}

    Since the matrix on the left is expressible in terms of 2\(\times\)2 blocks, we look for \(u_

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/p[10]/span, line 1, column 1
    
    \) in the form of a vector composed of two two-component vectors:

    \begin{displaymath}
u_{{\bf p}} = \left(\matrix{\phi_{{\bf p}} \cr \cr \chi_{{\bf p}}}\right)
\end{displaymath}

    Therefore, writing the equation in matrix form, we find

    \begin{displaymath}
\left(\matrix{mc^2 & & c\stackrel{\rightarrow}{\sigma}\cdot{...
...t)
\left(\matrix{\phi_{{\bf p}} \cr \cr \chi_{{\bf p}}}\right)
\end{displaymath}

    or

    \begin{displaymath}
\left(\matrix{E-mc^2 & & -c\stackrel{\rightarrow}{\sigma}\cd...
...left(\matrix{\phi_{{\bf p}} \cr \cr \chi_{{\bf p}}}\right)
= 0
\end{displaymath}

    which yields two equations

    \(\displaystyle \left(E-mc^2\right)\phi_
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[12]/table/tbody/tr[1]/td[1]/span[1], line 1, column 1
    
    - c\stackrel{\rightarrow}{\sigma}\cdot{\bf p}\chi_
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[12]/table/tbody/tr[1]/td[1]/span[2], line 1, column 1
    
    \)
    \(\textstyle =\) \(\displaystyle 0\)
    \(\displaystyle - c\stackrel{\rightarrow}{\sigma}\cdot{\bf p}\phi_
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[12]/table/tbody/tr[2]/td[1]/span[1], line 1, column 1
    
    + \left(E+mc^2\right)\chi_
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[12]/table/tbody/tr[2]/td[1]/span[2], line 1, column 1
    
    \)
    \(\textstyle =\) \(\displaystyle 0\)

    From the second equation:

    \begin{displaymath}
\chi_{{\bf p}} = {c\stackrel{\rightarrow}{\sigma}\cdot{\bf p}\over E+mc^2}\phi_{{\bf p}}
\end{displaymath}

    Note, one could also solve the first for \(\phi_

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/p[15]/span, line 1, column 1
    
    \) and obtain

    \begin{displaymath}
\phi_{{\bf p}} = {c\stackrel{\rightarrow}{\sigma}\cdot{\bf p}\over E-mc^2}\chi_{{\bf p}}
\end{displaymath}

    Using the first of these, then a single equation for \(\phi_

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/p[16]/span, line 1, column 1
    
    \) can be obtained

    \begin{displaymath}
\left(E-mc^2\right)\left(E+mc^2\right)\phi_{{\bf p}} -
c^2\...
...krel{\rightarrow}{\sigma}\cdot{\bf p}\right)^2\phi_{{\bf p}}=0
\end{displaymath}

    However,

    \begin{displaymath}
\left(\stackrel{\rightarrow}{\sigma}\cdot{\bf p}\right)^2 = ...
...stackrel{\rightarrow}{\sigma}\cdot({\bf p}\times{\bf p}) = p^2
\end{displaymath}

    Hence, we have the condition

    \begin{displaymath}
\left[E^2 - \left((mc^2)+c^2p^2\right)\right]\phi_{{\bf p}}=0
\end{displaymath}

    Since \(\phi_

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/p[19]/span, line 1, column 1
    
    \neq 0\), the equation is only satisfied if the quantity in the brackets vanishes, which yields the eigenvalues

    \begin{displaymath}
E = E_{{\bf p}} = \pm\sqrt{p^2 c^2 + m^2 c^4}
\end{displaymath}

    We see that the eigenvalues can be positive or negative. A plot of the energy levels is shown below:

    \(E_
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/span[1], line 1, column 1
    
    >mc^2\) (turquoise) and for \(E_
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/span[2], line 1, column 1
    
    <-mc^2\) (periwinkle). There is also a gap between \(-mc^2\) and \(mc^2\).

    We will show that for \(E>0\), an appropriate solution is to take

    \begin{displaymath}
\phi_{{\bf p}} = {\left(\matrix{1 \cr 0}\right)}\;\;\;\;\;\;...
...;\;{\rm or}\;\;\;\;\;\;\;\;\;\;{\left(\matrix{0 \cr 1}\right)}
\end{displaymath}

    If this is the case, then

    \begin{displaymath}
\chi_{{\bf p}} = {c\stackrel{\rightarrow}{\sigma}\cdot{\bf p...
...t{\bf p}\over E_{{\bf p}}+mc^2}{\left(\matrix{0 \cr 1}\right)}
\end{displaymath}

    However,

    \begin{displaymath}
\stackrel{\rightarrow}{\sigma}\cdot{\bf p}= \left(\matrix{p_z & p_x-ip_y \cr \cr p_x+ip_y & -p_z}\right)
\end{displaymath}

    so that

    \begin{displaymath}
\chi_{{\bf p}} = \left(\matrix{cp_z/(E_{{\bf p}}+mc^2) \cr \...
.../(E_{{\bf p}}+mc^2) \cr \cr
-cp_z/(E_{{\bf p}}+mc^2)}\right)
\end{displaymath}

    so that the full solution \(u_

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[5]/span, line 1, column 1
    
    \) is

    \begin{displaymath}
u_{{\bf p}} = \left(\matrix{1 \cr \cr 0 \cr \cr cp_z/(E_{{\b...
.../(E_{{\bf p}}+mc^2) \cr \cr
-cp_z/(E_{{\bf p}}+mc^2)}\right)
\end{displaymath}

    Note that when \({\bf p}=0\), the third and fourth components of \(u_

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[6]/span, line 1, column 1
    
    \) vanish. In this case, energy is just \(E_0 = mc^2\) and the full time-dependent wave function becomes

    \begin{displaymath}
\Psi(t) \longrightarrow
\left(\matrix{1 \cr \cr 0 \cr \cr 0...
...atrix{0 \cr \cr 1 \cr \cr 0 \cr \cr 0}\right)e^{-imc^2t/\hbar}
\end{displaymath}

    which are both forward propagating solutions. These correspond to particle solutions, in particular, a spin-1/2 particle propagating forward in time with an energy equal to the rest mass energy.

    When \(E<0\), we take

    \begin{displaymath}
\chi_{{\bf p}} = {\left(\matrix{1 \cr 0}\right)}\;\;\;\;\;\;...
...;\;{\rm or}\;\;\;\;\;\;\;\;\;\;{\left(\matrix{0 \cr 1}\right)}
\end{displaymath}

    so that

    \begin{displaymath}
\phi_{{\bf p}} = {c\stackrel{\rightarrow}{\sigma}\cdot{\bf p...
...cdot{\bf p}} \over \vert E_{{\bf p}}\vert+mc^2} \chi_{{\bf p}}
\end{displaymath}

    By the same reasoning, the solution for \(u_

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[10]/span, line 1, column 1
    
    \) is

    \begin{displaymath}
u_{{\bf p}} = \left(\matrix{-cp_z/(\vert E_{{\bf p}}\vert+mc...
...2) \cr \cr
cp_z/(E_{{\bf p}}+mc^2)\cr\cr 0 \cr \cr 1}\right)
\end{displaymath}

    so that in the limit \({\bf p}=0\), and \(E_0=-mc^2\),

    \begin{displaymath}
\Psi(t) \longrightarrow
\left(\matrix{0 \cr \cr 0 \cr \cr 1...
...matrix{0 \cr \cr 0 \cr \cr 0 \cr \cr 1}\right)e^{imc^2t/\hbar}
\end{displaymath}

    which describes particles moving backward in times. Thus, the interpretation is that the negative energy solutions correspond to anti-particles, the the components, \(\phi_

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[12]/span[1], line 1, column 1
    
    \) and \(\chi_
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[12]/span[2], line 1, column 1
    
    \) of \(u_
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[12]/span[3], line 1, column 1
    
    \) correspond to the particle and anti-particle components, respectively. Thus, the Dirac equation no only describes spin but it also includes particle and the corresponding anti-particle solutions!

    In the non-relativistic limit, for \(E>0\), we have

    \begin{displaymath}
E_{{\bf p}}\approx mc^2 + {{\bf p}^2 \over 2m}
\end{displaymath}

    so that

    \begin{displaymath}
\chi_{{\bf p}} = {c\stackrel{\rightarrow}{\sigma}\cdot{\bf p}\over 2mc^2 + {\bf p}^2/2m}\phi_{{\bf p}}
\end{displaymath}

    since \(mc^2 \gg {\bf p}^2/2m\), it follows that

    \begin{displaymath}
\chi_{{\bf p}}\ll \phi_{{\bf p}}
\end{displaymath}

    Neglecting it, and recalling that for \(E>0\),

    \begin{displaymath}
\phi_{{\bf p}} = {\left(\matrix{1 \cr 0}\right)}\;\;\;\;\;\;\;\;\;\;{\rm or}\;\;\;\;\;\;\;\;\;{\left(\matrix{0 \cr 1}\right)}
\end{displaymath}

    the eigenfunctions reduce to

    \begin{displaymath}
\psi_{{\bf p}}({\bf r}) =
\left(\matrix{1 \cr \cr 0 \cr \cr...
...\cr 0 \cr \cr 0 \cr \cr}\right)
e^{i{\bf p}\cdot{\bf r}/\hbar}
\end{displaymath}

    The lower component has become reduntant, and the eigenfunctions just correspond to those of a free particle with an attached spin eigenfunction \({\left(\matrix{1 \cr 0}\right)}\) or \({\left(\matrix{0 \cr 1}\right)}\) for \(m_s=\hbar/2\) or \(-\hbar/2\), respectively. For \(E>0\), the lower component, \(\chi_

    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[18]/span[1], line 1, column 1
    
    \) is called the minor component and the upper component \(\phi_
    ParseError: invalid DekiScript (click for details)
    Callstack:
        at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[18]/span[2], line 1, column 1
    
    \) is called the major component.


    This page titled 2.7: Solution of the Dirac equation for a free particle is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark E. Tuckerman.

    • Was this article helpful?