2.7: Solution of the Dirac equation for a free particle
- Page ID
- 20886
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)The Dirac Hamiltonian takes the form

where

Using \({\bf P}= (\hbar/i)\nabla\), in the coordinate basis, the Dirac equation for a free particle reads

Since the operator on the left side is a 4\(\times\)4 matrix, the wave function \(\Psi({\bf r},t)\) is actually a four-component vector of functions of \({\bf r}\) and \(t\):

which is called a four-component Dirac spinor. In order to generate an eigenvalue problem, we look for a solution of the form

which, when substituted into the Dirac equation gives the eigenvalue equation
![\begin{displaymath}
\left[-i\hbar c\stackrel{\rightarrow}{\alpha}\cdot\nabla + \beta mc^2\right]\psi({\bf r}) = E\psi({\bf r})
\end{displaymath}](http://www.nyu.edu/classes/tuckerman/quant.mech/lectures/lecture_7/img11.png)
Note that, since \(H\) is only a function of \({\bf P}\), then \([{\bf P},H]=0\) so that the eigenvalues \({\bf p}\) of \({\bf P}\) can be used to characterize the states. In particular, we look for free-particle (plane-wave) solutions of the form:

where \(u_
Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/p[8]/span, line 1, column 1
![\begin{displaymath}
\left[c\stackrel{\rightarrow}{\alpha}\cdot{\bf p}+ \beta mc^2\right]u_{{\bf p}} = Eu_{{\bf p}}
\end{displaymath}](http://www.nyu.edu/classes/tuckerman/quant.mech/lectures/lecture_7/img18.png)
Since the matrix on the left is expressible in terms of 2\(\times\)2 blocks, we look for \(u_
Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/p[10]/span, line 1, column 1

Therefore, writing the equation in matrix form, we find

or

which yields two equations
\(\displaystyle \left(E-mc^2\right)\phi_ (click for details) - c\stackrel{\rightarrow}{\sigma}\cdot{\bf p}\chi_ Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[12]/table/tbody/tr[1]/td[1]/span[1], line 1, column 1
(click for details) \) Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[12]/table/tbody/tr[1]/td[1]/span[2], line 1, column 1
| \(\textstyle =\) | \(\displaystyle 0\) | |
\(\displaystyle - c\stackrel{\rightarrow}{\sigma}\cdot{\bf p}\phi_ (click for details) + \left(E+mc^2\right)\chi_ Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[12]/table/tbody/tr[2]/td[1]/span[1], line 1, column 1
(click for details) \) Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[12]/table/tbody/tr[2]/td[1]/span[2], line 1, column 1
| \(\textstyle =\) | \(\displaystyle 0\) |
From the second equation:

Note, one could also solve the first for \(\phi_
Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/p[15]/span, line 1, column 1

Using the first of these, then a single equation for \(\phi_
Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/p[16]/span, line 1, column 1

However,

Hence, we have the condition
![\begin{displaymath}
\left[E^2 - \left((mc^2)+c^2p^2\right)\right]\phi_{{\bf p}}=0
\end{displaymath}](http://www.nyu.edu/classes/tuckerman/quant.mech/lectures/lecture_7/img31.png)
Since \(\phi_
Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/p[19]/span, line 1, column 1

We see that the eigenvalues can be positive or negative. A plot of the energy levels is shown below:
Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/span[1], line 1, column 1
Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/span[2], line 1, column 1
We will show that for \(E>0\), an appropriate solution is to take

If this is the case, then

However,

so that

so that the full solution \(u_
Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[5]/span, line 1, column 1

Note that when \({\bf p}=0\), the third and fourth components of \(u_
Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[6]/span, line 1, column 1

which are both forward propagating solutions. These correspond to particle solutions, in particular, a spin-1/2 particle propagating forward in time with an energy equal to the rest mass energy.
When \(E<0\), we take

so that

By the same reasoning, the solution for \(u_
Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[10]/span, line 1, column 1

so that in the limit \({\bf p}=0\), and \(E_0=-mc^2\),

which describes particles moving backward in times. Thus, the interpretation is that the negative energy solutions correspond to anti-particles, the the components, \(\phi_
Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[12]/span[1], line 1, column 1
Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[12]/span[2], line 1, column 1
Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[12]/span[3], line 1, column 1
In the non-relativistic limit, for \(E>0\), we have

so that

since \(mc^2 \gg {\bf p}^2/2m\), it follows that

Neglecting it, and recalling that for \(E>0\),

the eigenfunctions reduce to

The lower component has become reduntant, and the eigenfunctions just correspond to those of a free particle with an attached spin eigenfunction \({\left(\matrix{1 \cr 0}\right)}\) or \({\left(\matrix{0 \cr 1}\right)}\) for \(m_s=\hbar/2\) or \(-\hbar/2\), respectively. For \(E>0\), the lower component, \(\chi_
Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[18]/span[1], line 1, column 1
Callstack:
at (Courses/New_York_University/G25.2666:_Quantum_Chemistry_and_Dynamics/2:_General_theory_of_spin/2.7:_Solution_of_the_Dirac_equation_for_a_free_particle), /content/body/div[19]/div/p[18]/span[2], line 1, column 1