Skip to main content
Chemistry LibreTexts

2.5: Explicit form of the spin-1/2 rotation operator

  • Page ID
    20882
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    For spin-1/2, the rotation operator

    \begin{displaymath}
{R_{\alpha}^{(s)}({\bf n})}= \exp\left(-i{\alpha \over 2}\stackrel{\rightarrow}{\sigma}\cdot{\hat{\bf n}}\right)
\end{displaymath}

    can be written as an explicit 2\(\times\) 2 matrix. This is accomplished by expanding the exponential into a Taylor series:

    \begin{displaymath}
\exp\left(-i{\alpha \over 2}\stackrel{\rightarrow}{\sigma}\c...
...4(\stackrel{\rightarrow}{\sigma}\cdot{\hat{\bf n}})^4 - \cdots
\end{displaymath}

    Note that

    \begin{displaymath}
(\stackrel{\rightarrow}{\sigma}\cdot{\hat{\bf n}})^2 = (\sta...
...ot{\hat{\bf n}}+ i\sigma({\hat{\bf n}}\times{\hat{\bf n}}) = 1
\end{displaymath}

    Thus, the Taylor series becomes:

    \(\displaystyle \exp\left(-i{\alpha \over 2}\stackrel{\rightarrow}{\sigma}\cdot{\hat{\bf n}}\right)\) \(\textstyle =\) $\displaystyle 1-{i\alpha \over 2}\stackrel{\rightarrow}{\sigma}\cdot{\hat{\bf n...
...gma}\cdot{\hat{\bf n}})
+ {1 \over 4!}\left({i\alpha \over 2}\right)^4 - \cdots$
    \(\textstyle =\) $\displaystyle \left[1-{1 \over 2!}\left({\alpha \over 2}\right)^2 +
{1 \over 4!...
... \over 2}\right) - {1 \over 3!}\left({\alpha \over 2}\right)^3 + \cdots
\right]$
    \(\textstyle =\) $\displaystyle \cos\left({\alpha \over 2}\right) - i\stackrel{\rightarrow}{\sigma}\cdot{\hat{\bf n}}
\sin\left({\alpha \over 2}\right)$

    Thus,

    \begin{displaymath}
{R_{\alpha}^{(s)}({\bf n})}= \cos\left({\alpha \over 2}\righ...
...w}{\sigma}\cdot{\hat{\bf n}}
\sin\left({\alpha \over 2}\right)
\end{displaymath}

    As a 2\(\times\)2 matrix,

    \begin{displaymath}
\stackrel{\rightarrow}{\sigma}\cdot{\hat{\bf n}}= \sigma_x n...
...
= \left(\matrix{n_z & n_x-in_y \cr n_x + in_y & -n_z}\right)
\end{displaymath}

    so that the rotation operator becomes

    \begin{displaymath}
{R_{\alpha}^{(s)}({\bf n})}=
\left(\matrix{\cos\left({\alph...
... \over 2}\right)+in_z\sin\left({\alpha \over 2}\right)}\right)
\end{displaymath}

    Now consider the example of \(\alpha = 2\pi\). In this case, it is easy to see that the rotation operator reduces to

    \begin{displaymath}
R_{2\pi}^{(s)}({\hat{\bf n}}) = \left(\matrix{-1 & 0 \cr 0 & -1}\right) = -{\rm I}
\end{displaymath}

    Interestingly, a rotation through an angle \(2\pi\) of a spin state returns the state to its original value but causes it to pick up an overall phase factor

    \begin{displaymath}
-1 = e^{i\pi}
\end{displaymath}

    While this phase factor cannot affect any physical property, it is, nevertheless observable in the experiment depicted below:

    \(\vert\chi\rangle\), is split by a partially reflecting material into two beams. One of these is sent through a magnetic field region tuned to generate a rotation by \(\alpha = 2\pi\) of the spin state, so that the new state is \(\vert\chi'\rangle\). The beams are then brought back together and allowed to interfere. The overlap, \(\langle \chi'\vert\chi\rangle=-1\) is measured, which will yield the over phase factor \(-1\).


    This page titled 2.5: Explicit form of the spin-1/2 rotation operator is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Mark E. Tuckerman.

    • Was this article helpful?