2.4: Vacuum Filtration
- Page ID
- 535819
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Vacuum filtration is the standard technique used for separating a solid-liquid mixture when the goal is to retain the solid (for example in crystallization). Similar to gravity filtration, a solid-liquid mixture is poured onto a filter paper, with the main difference being that the process is aided by suction beneath the funnel.
The process has advantages and disadvantages in comparison to gravity filtration.
Advantages:
1) Vacuum filtration is much faster than gravity filtration, often taking less than one minute with good seals and a good vacuum source.
2) Vacuum filtration is more efficient at removing residual liquid, leading to a purer solid.
Disadvantages:
1) The force of suction may draw fine crystals through the filter paper pores, leading to a quantity of material that cannot be recovered from the filter paper, and possibly an additional quantity that is lost in the filtrate.
.png?revision=1&size=bestfit&width=1109&height=371)
Water Aspirator
A vacuum source is necessary for this filtration type. A water aspirator is an inexpensive attachment to a water spigot that creates a vacuum in the Erlenmeyer flask. As water flows through the faucet and the aspirator, suction is created in the flask.

Step-by-Step Procedures
Assemble the suction filtration flask
- Attach a thick-walled rubber hose to the Erlenmeyer's side arm. Connect this thick tubing to the water aspirator as well. It is best to not bend or strain the tubing as much as is practical, as this may cause poor suction.
- Place a rubber sleeve and Buchner funnel atop the side-arm Erlenmeyer flask.
- Obtain a filter paper that will fit perfectly into the Buchner funnel. The paper should cover all the holes in the funnel. Note: If you will be weighing the final product, be sure to weigh the top of the Buchner funnel with the filter paper in place.
.png?revision=1&size=bestfit&width=1110&height=368)
.png?revision=1&size=bestfit&width=1100&height=360)
- Turn on the faucet connected to the water aspirator to create a strong flow of water (the degree of suction is related to the water flow). Wet the filter paper with cold solvent (using the same solvent used in crystallization, if applicable).
- Suction should drain the liquid and hold the moist filter paper snugly over the holes in the filter. If the solvent does not drain or suction is not occurring, you may need to press down on the funnel to create a good seal between the glass and rubber sleeve.
.png?revision=1&size=bestfit&width=1107&height=370)
Filter the Mixture
- Swirl the mixture to be filtered in order to dislodge solid from the sides of the flask. If the solid is very thick, use a spatula or stirring rod to free it from the glass.
- With a quick motion, swirl and dump the solid into the funnel in portions. If the solid is very thick, scoop it out of the flask onto the filter paper. It's best if the solid can be directed toward the middle of the filter paper, as solid near the edges may creep around the filter paper.
- A small amount of chilled solvent (1-2mL for macroscale work) can be used to help rinse any residual solid from the flask into the funnel. In crystallization, it is not wise to use an excessive amount of solvent as it will decrease the yield by dissolving small amounts of crystals. Again, press on the funnel to create a good seal and efficient drainage if necessary.
- After a few minutes, turn off the water and disconnect the flask. Take the top portion of the Buchner funnel off and cover with a Kimwipe. It is best to leave this to dry over the next week before completing any analysis.
Adapted from Suction Filtration by Lisa Nichols.