Skip to main content
Chemistry LibreTexts

8.2: Pre-lab

  • Page ID
    537577
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\dsum}{\displaystyle\sum\limits} \)

    \( \newcommand{\dint}{\displaystyle\int\limits} \)

    \( \newcommand{\dlim}{\displaystyle\lim\limits} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \(\newcommand{\longvect}{\overrightarrow}\)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In this pre-laboratory exercise, you will determine how dilution or the addition of a strong acid or base affects the pH of a buffer.

    Suppose you need to prepare a buffer solution with a pH of 4.00 and a total buffer concentration of 0.10 M  using benzoic acid, C6H5COOH, (pKa = 4.20) and sodium benzoate, C6H5COONa.  The equilibrium involved in this buffer is

    C6H5COOH(aq)   +   H2O(l)   ⇌ C6H5COO-(aq)   +   H3O+(aq)

    To simply the equation, let HA represent the acid and A- represent the benzoate ion.

                HA(aq)   +   H2O(l)   ⇌   A-(aq)   + H3O+(aq)

    Using this representation, the Henderson-Hasselbalch equation can be written as

                pH   =   pKa   +   log [A-]/[HA]   =   4.20   +   log [A-]/[HA]

    Since the total buffer concentration must be 0.10 M, then

                [HA]   +   [A-]   =   0.10 M

    or         [A-]   =   0.10   -   [HA]

    Since we want a solution with a pH of 4.00, the Henderson-Hasselbalch equation can be written as follows:

                4.00   =   4.20   +   log  (0.10-[HA])/[HA]    or      -0.20   =   log (0.10-[HA])/[HA]

    Using the definition of logarithms, we can write the above equation as

                10-0.20   =   (0.10-[HA])/[HA]          or         0.63   =  (0.10-[HA])/[HA]

    Solving this equation gives

                [HA]   =   0.061 M      

    and      [A-]      =  0.039 M

    Therefore, a solution with a benzoic acid concentration of 0.061 M and a sodium benzoate concentration of 0.039 M should have a pH of 4.00.  You should be prepared to do a calculation similar to this when you come to the laboratory session.

    The initial pH water and this buffer is recorded in the table below.  When 1.0 M HCl is added  to the beaker containing water and the beaker containing the buffer solution, the pH changes as recorded below.

    mL 1.0 M HCl added

    0.0 mL

    1.0 mL

    2.0 mL

    3.0 mL

    5.0 mL

    30 mL

    pH water

    6.65

    2.15

    1.97

    1.88

    1.78

    1.50

    pH buffer

    3.80

    3.27

    3.00

    2.90

    2.00

    1.50

     

     

     

     

     

     

     

     

     

     

    When 1.0 M NaOH is added to the beaker containing water and the beaker containing the buffer solution pH changes as recorded in the following table. 

    mL 1.0 M NaOH added

    0.0 mL

    1.0 mL

    2.0 mL

    3.0 mL

    5.0 mL

    30 mL

    pH water

    6.55

    11.21

    11.47

    11.63

    11.77

    12.03

    pH buffer

    3.75

    4.39

    4.84

    5.47

    11.81

    12.09

     

     

     

     

     

     

     

     

     

    When the indicated amount of pure water is added to the beaker containing water and the beaker containing the buffer solution, the pH changes are recorded in the table below. 

    mL of pure water added

    0.0 mL

    1.0 mL

    2.0 mL

    3.0 mL

    5.0 mL

    30 mL

    pH water

    4.92

    4.88

    4.90

    4.93

    4.95

    4.91

    pH buffer

    3.87

    3.89

    3.88

    3.87

    3.87

    3.87

     

    1.     Upon adding a small amount of strong acid, how does the pH change for the buffer solution compare to that for water?

     

    2.     Upon adding a small amount of strong base, how does the pH change for the buffer solution compare to that for water?

     

    3.     Can a buffer indefinitely resist a significant change in pH?  What observations do you have to support your answer?

     

    4.     How does dilution affect the pH of a buffer solution?  Use the Henderson-Hasselbalch equation to explain your answer.

     

     

     


    8.2: Pre-lab is shared under a CC BY-NC-SA license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?