# 5.9: Putting It Together- Nonlinear Models

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$

( \newcommand{\kernel}{\mathrm{null}\,}\) $$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\id}{\mathrm{id}}$$

$$\newcommand{\Span}{\mathrm{span}}$$

$$\newcommand{\kernel}{\mathrm{null}\,}$$

$$\newcommand{\range}{\mathrm{range}\,}$$

$$\newcommand{\RealPart}{\mathrm{Re}}$$

$$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$

$$\newcommand{\Argument}{\mathrm{Arg}}$$

$$\newcommand{\norm}[1]{\| #1 \|}$$

$$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$

$$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\AA}{\unicode[.8,0]{x212B}}$$

$$\newcommand{\vectorA}[1]{\vec{#1}} % arrow$$

$$\newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow$$

$$\newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vectorC}[1]{\textbf{#1}}$$

$$\newcommand{\vectorD}[1]{\overrightarrow{#1}}$$

$$\newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}}$$

$$\newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}}$$

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$

$$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$

### Let’s Summarize

This is what we have learned about exponential models:

The general form of an exponential model is y = C · bx.

• Exponential models are nonlinear. More specifically, exponential models predict that y increases or decreases by a constant percentage for each 1-unit increase in x.
• C is the initial value. It is the y-value when x = 0. It is also the y-intercept.
• b is the growth factor or decay factor. b is always positive.
• If b is greater than 1, b is a growth factor. In this case, the association is positive, and y is increasing. This makes sense because multiplying by a number greater than 1 increases the initial value. From the growth factor, we can determine the percent increase in y for each additional 1-unit increase in x.
• Similarly, if b is greater than 0 and less than 1, b is a decay factor. In this case, the association is negative, and y is decreasing. From the decay factor, we can determine the percentage decrease in y for each additional 1-unit increase in x.

Let’s compare the general form of an exponential model to the general form for a linear model:y = a + bx.

• In the linear model, a is the initial value. It is the y-value when x = 0. It is also the y-intercept.
• b is the slope. From the slope, we can determine the amount and direction the y-value changes for each additional 1-unit increase in x. When b is positive, there is a positive association, and y increases. When b is negative, there is a negative association, and y decreases.