Skip to main content
Chemistry LibreTexts

Solutions 7

  • Page ID
    204084
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Q1:

    Below are molecules of similar symmetry and the required symmetry elements.

    a).

    Q1a.jpg

    b).

    Q1b.jpg

    c).

    Q1c.jpg

    d).

    Q1d.jpg

    Q2:

    Symmetry elements

    s orbital: inversion center, infinite planes of reflection, infinite axes of proper and improper rotations

    p orbital: inversion center, 1 vertical plane of reflection, infinite horizontal planes of reflection, infinite \(C_2\) and \(S_2)\ axes, 1 \(C_\infty\) and \(S_\infty\) axis of rotation, inversion center

    \(d_{z^2}\) : same as p orbital

    \(d_{xy}\): 4 \(C_2\) and \(S_2)\ axes, 1 \(C_4\) and \(S_4)\, 4 vertical planes of reflection, 1 horizontal plane of reflection, inversion center

    Q3:

    a). center of inversion

    b). center of inversion

    c). neither

    d). \(S_4\) axis

    Q4:

    a). \(C_1\)

    b). \(T_d\)

    c). \(C_\infty\)

    d). \(C_1\)

    e). \(C_{2v}\)

    f). \(C_2\)

    Q5:

    a). An inversion center will prevent a molecule from being polar. Molecules (a), (c), (e), and (f) are all polar.

    b). Planes of reflection exclude chirality. Molecule (d) is chiral.


    Solutions 7 is shared under a not declared license and was authored, remixed, and/or curated by LibreTexts.

    • Was this article helpful?