Skip to main content
Chemistry LibreTexts

19.4: Stirling's Approximation

  • Page ID
    151784
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The polynomial coefficient, \(C\), is a function of the factorials of large numbers. Since \(N!\) quickly becomes very large as \(N\) increases, it is often impractical to evaluate \(N!\) from the definition,

    \[N!=\left(N\right)\left(N-1\right)\left(N-2\right)\dots \left(3\right)\left(2\right)\left(1\right) \nonumber \]

    Fortunately, an approximation, known as Stirling’s formula or Stirling’s approximation is available. Stirling’s approximation is a product of factors. Depending on the application and the required accuracy, one or two of these factors can often be taken as unity. Stirling’s approximation is

    \[N!\approx N^N \left(2\pi N\right)^{1/2}\mathrm{exp}\left(-N\right)\mathrm{exp}\left(\frac{1}{12N}\right)\approx N^N\left(2\pi N\right)^{1/2}\mathrm{exp}\left(-N\right)\approx N^N\mathrm{exp}\left(-N\right) \nonumber \]

    In many statistical thermodynamic arguments, the important quantity is the natural logarithm of \(N!\) or its derivative, \({d ~ { \ln N!\ }}/{dN}\). In such cases, the last version of Stirling’s approximation is usually adequate, even though it affords a rather poor approximation for \(N!\) itself.


    This page titled 19.4: Stirling's Approximation is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.