# 20.12: The Degeneracy of an Isolated System and Its Entropy

$$\newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} }$$ $$\newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}}$$$$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\id}{\mathrm{id}}$$ $$\newcommand{\Span}{\mathrm{span}}$$ $$\newcommand{\kernel}{\mathrm{null}\,}$$ $$\newcommand{\range}{\mathrm{range}\,}$$ $$\newcommand{\RealPart}{\mathrm{Re}}$$ $$\newcommand{\ImaginaryPart}{\mathrm{Im}}$$ $$\newcommand{\Argument}{\mathrm{Arg}}$$ $$\newcommand{\norm}[1]{\| #1 \|}$$ $$\newcommand{\inner}[2]{\langle #1, #2 \rangle}$$ $$\newcommand{\Span}{\mathrm{span}}$$

In Section 20.9, we find that the sum of the probabilities of the population sets of an isolated system is

$1=\sum_{\left\{N_i\right\},E}{W\left(N_i,g_i\right){\rho }_{MS,N,E}}.$

By the principle of equal a priori probabilities, $${\rho }_{MS,N,E}$$ is a constant, and it can be factored out of the sum. We have

$1={\rho }_{MS,N,E}\sum_{\left\{N_i\right\},E}{W\left(N_i,g_i\right)}$

Moreover, the sum of the thermodynamic probabilities over all allowed population sets is just the number of microstates that have energy $$E$$. This sum is just the degeneracy of the system energy, $$E$$. The symbol $$\mathit{\Omega}_E$$ is often given to this system-energy degeneracy. That is,

$\mathit{\Omega}_E=\sum_{\left\{N_i\right\},E}{W\left(N_i,g_i\right)}$

The sum of the probabilities of the population sets of an isolated system becomes

$1={\rho }_{MS,N,E}{\mathit{\Omega}}_E$

In Section 20.9, we infer that

$\rho_{MS,N,E}=\prod^{\infty }_{i=1}{\rho \left({\epsilon }_i\right)^{N_i}}$

so we have

$1={\mathit{\Omega}}_E\prod^{\infty }_{i=1}\rho \left(\epsilon_i\right)^{N_i}$

This page titled 20.12: The Degeneracy of an Isolated System and Its Entropy is shared under a CC BY-SA 4.0 license and was authored, remixed, and/or curated by Paul Ellgen via source content that was edited to the style and standards of the LibreTexts platform; a detailed edit history is available upon request.