9.9: Comparing the E2 and E1 Reactions of Alkyl Halides
- Page ID
- 18171
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)
( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\id}{\mathrm{id}}\)
\( \newcommand{\Span}{\mathrm{span}}\)
\( \newcommand{\kernel}{\mathrm{null}\,}\)
\( \newcommand{\range}{\mathrm{range}\,}\)
\( \newcommand{\RealPart}{\mathrm{Re}}\)
\( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)
\( \newcommand{\Argument}{\mathrm{Arg}}\)
\( \newcommand{\norm}[1]{\| #1 \|}\)
\( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)
\( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)
\( \newcommand{\vectorA}[1]{\vec{#1}} % arrow\)
\( \newcommand{\vectorAt}[1]{\vec{\text{#1}}} % arrow\)
\( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vectorC}[1]{\textbf{#1}} \)
\( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)
\( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)
\( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)
\( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)
\( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)
\(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)Having discussed the many factors that influence nucleophilic substitution and elimination reactions of alkyl halides, we must now consider the practical problem of predicting the most likely outcome when a given alkyl halide is reacted with a given nucleophile. As we noted earlier, several variables must be considered, the most important being the structure of the alkyl group and the nature of the nucleophilic reactant.In general, in order for an SN1 or E1 reaction to occur, the relevant carbocation intermediate must be relatively stable. Strong nucleophile favor substitution, and strong bases, especially strong hindered bases (such as tert-butoxide) favor elimination.
The nature of the halogen substituent on the alkyl halide is usually not very significant if it is Cl, Br or I. In cases where both SN2 and E2 reactions compete, chlorides generally give more elimination than do iodides, since the greater electronegativity of chlorine increases the acidity of beta-hydrogens. Indeed, although alkyl fluorides are relatively unreactive, when reactions with basic nucleophiles are forced, elimination occurs (note the high electronegativity of fluorine).
The following table summarizes the expected outcome of alkyl halide reactions with nucleophiles. It is assumed that the alkyl halides have one or more beta-hydrogens, making elimination possible; and that low dielectric solvents (e.g. acetone, ethanol, tetrahydrofuran & ethyl acetate) are used. When a high dielectric solvent would significantly influence the reaction this is noted in red. Note that halogens bonded to sp2 or sp hybridized carbon atoms do not normally undergo substitution or elimination reactions with nucleophilic reagents.
Nucleophile |
Anionic Nucleophiles |
Anionic Nucleophiles |
Neutral Nucleophiles |
---|---|---|---|
Alkyl Group |
|||
Primary RCH2– |
Rapid SN2 substitution. The rate may be reduced by substitution of β-carbons, as in the case of neopentyl. | Rapid SN2 substitution. E2 elimination may also occur. e.g. ClCH2CH2Cl + KOH ——> CH2=CHCl |
SN2 substitution. (N ≈ S >>O) |
Secondary R2CH– |
SN2 substitution and / or E2 elimination (depending on the basicity of the nucleophile). Bases weaker than acetate (pKa = 4.8) give less elimination. The rate of substitution may be reduced by branching at the β-carbons, and this will increase elimination. | E2 elimination will dominate. | SN2 substitution. (N ≈ S >>O) In high dielectric ionizing solvents, such as water, dimethyl sulfoxide & acetonitrile, SN1 and E1 products may be formed slowly. |
Tertiary R3C– |
E2 elimination will dominate with most nucleophiles (even if they are weak bases). No SN2 substitution due to steric hindrance. In high dielectric ionizing solvents, such as water, dimethyl sulfoxide & acetonitrile, SN1 and E1 products may be expected. | E2 elimination will dominate. No SN2 substitution will occur. In high dielectric ionizing solvents SN1 and E1 products may be formed. | E2 elimination with nitrogen nucleophiles (they are bases). No SN2 substitution. In high dielectric ionizing solvents SN1 and E1 products may be formed. |
Allyl H2C=CHCH2– |
Rapid SN2 substitution for 1º and 2º-halides. For 3º-halides a very slow SN2 substitution or, if the nucleophile is moderately basic, E2 elimination. In high dielectric ionizing solvents, such as water, dimethyl sulfoxide & acetonitrile, SN1 and E1 products may be observed. | Rapid SN2 substitution for 1º halides. E2 elimination will compete with substitution in 2º-halides, and dominate in the case of 3º-halides. In high dielectric ionizing solvents SN1 and E1 products may be formed. | Nitrogen and sulfur nucleophiles will give SN2 substitution in the case of 1º and 2º-halides. 3º-halides will probably give E2 elimination with nitrogen nucleophiles (they are bases). In high dielectric ionizing solvents SN1 and E1 products may be formed. Water hydrolysis will be favorable for 2º & 3º-halides. |
Benzyl C6H5CH2– |
Rapid SN2 substitution for 1º and 2º-halides. For 3º-halides a very slow SN2 substitution or, if the nucleophile is moderately basic, E2 elimination. In high dielectric ionizing solvents, such as water, dimethyl sulfoxide & acetonitrile, SN1 and E1 products may be observed. | Rapid SN2 substitution for 1º halides (note there are no β hydrogens). E2 elimination will compete with substitution in 2º-halides, and dominate in the case of 3º-halides. In high dielectric ionizing solvents SN1 and E1 products may be formed. | Nitrogen and sulfur nucleophiles will give SN2 substitution in the case of 1º and 2º-halides. 3º-halides will probably give E2 elimination with nitrogen nucleophiles (they are bases). In high dielectric ionizing solvents SN1 and E1 products may be formed. Water hydrolysis will be favorable for 2º & 3º-halides. |
Contributors
William Reusch, Professor Emeritus (Michigan State U.), Virtual Textbook of Organic Chemistry