Skip to main content
Chemistry LibreTexts

Borrmann Effect

  • Page ID
    17697
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    Due to anomalous absorption, type 1 wavefields propagate in a perfect or nearly perfect crystal with a less than normal absorption. For details and the physical interpretation, see anomalous absorption.

    Super-Borrmann effect

    It is the enhancement of the Borrmann effect in a three-beam case, e.g. when the \(111\) and \(\overline{111}\) reflections are simultaneously excited in a silicon or germanium crystal.

    History

    The Borrmann effect was first discovered in quartz (Borrmann G., 1941, Über Extinktionsdiagramme der Röntgenstrahlen von Quarz. Physik Z., 42, 157-162) and then in calcite crystals (Borrmann G., 1950, Die Absorption von Röntgenstrahlen in Fall der Interferenz. Z. Phys., 127, 297-323), and interpreted by Laue (Laue, M. von, 1949, Die Absorption der Röntgenstrahlen in Kristallen im Interferenzfall. Acta Crystallogr. 2, 106-113).

    The super-Borrmann effect was first observed by Borrmann G. and Hartwig W. (1965), Die Absorption der Röntgenstrahlen im Dreistrahlfall der Interferenz. Z. Krist., 121, 401-409.

    See also

    • Section 5.1 of International Tables of Crystallography, Volume B for X-rays
    • Section 5.2 of International Tables of Crystallography, Volume B for electrons
    • Section 5.3 of International Tables of Crystallography, Volume B for neutrons

    Borrmann Effect is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Online Dictionary of Crystallography.