Skip to main content
Chemistry LibreTexts

2.5: Practice of Green Chemistry

  • Page ID
    284414
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \) \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)\(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\) \(\newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\) \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\) \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\) \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\) \( \newcommand{\Span}{\mathrm{span}}\)\(\newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    The limitations of a command and control system for environmental protection have become more obvious even as the system has become more successful. In industrialized societies with good, well-enforced regulations, most of the easy and inexpensive measures that can be taken to reduce environmental pollution and exposure to harmful chemicals have been implemented. Therefore, small increases in environmental protection now require relatively large investments in money and effort. Is there a better way? There is, indeed. The better way is through the practice of green chemistry.

    Green chemistry can be defined as the practice of chemical science and manufacturing in a manner that is sustainable, safe, and non-polluting and that consumes minimum amounts of materials and energy while producing little or no waste material. This definition of green chemistry is illustrated in Figure \(\PageIndex{1}\). The practice of green chemistry begins with recognition that the production, processing, use, and eventual disposal of chemical products may cause harm when performed incorrectly. In accomplishing its objectives, green chemistry and green chemical engineering may modify or totally redesign chemical products and processes with the objective of minimizing wastes and the use or generation of particularly dangerous materials. Those who practice green chemistry recognize that they are responsible for any effects on the world that their chemicals or chemical processes may have. Far from being economically regressive and a drag on profits, green chemistry is about increasing profits and promoting innovation while protecting human health and the environment.

    clipboard_e6bc3d40403d134d49039e4bbaf27dcf2.png
    Figure \(\PageIndex{1}\). Illustration of the definition of green chemistry, which emphasizes renewable feedstocks, exacting control, mild reaction conditions, maximum recycling of materials, minimal wastes, and degradability of products that might enter the environment.

    To a degree, we are still finding out what green chemistry is. That is because it is a rapidly evolving and developing subdiscipline in the field of chemistry. And it is a very exciting time for those who are practitioners of this developing science. Basically, green chemistry harnesses a vast body of chemical knowledge and applies it to the production, use, and ultimate disposal of chemicals in a way that minimizes consumption of materials, exposure of living organisms, including humans, to toxic substances, and damage to the environment. And it does so in a manner that is economically feasible and cost effective. In one sense, green chemistry is the most efficient possible practice of chemistry and the least costly when all of the costs of doing chemistry, including hazards and potential environmental damage are taken into account.

    Green chemistry is sustainable chemistry. There are several important respects in which green chemistry is sustainable:

    • Economic: At a high level of sophistication green chemistry normally costs less in strictly economic terms (to say nothing of environmental costs) than chemistry as it is normally practiced.
    • Materials: By efficiently using materials, maximum recycling, and minimum use of virgin raw materials, green chemistry is sustainable with respect to materials.
    • Waste: By reducing insofar as possible, or even totally eliminating their production, green chemistry is sustainable with respect to wastes

    This page titled 2.5: Practice of Green Chemistry is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Stanley E. Manahan.

    • Was this article helpful?