Skip to main content
Chemistry LibreTexts

19.1: Micelle Formation

  • Page ID
    294377
  • \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \( \newcommand{\id}{\mathrm{id}}\) \( \newcommand{\Span}{\mathrm{span}}\)

    ( \newcommand{\kernel}{\mathrm{null}\,}\) \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\) \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\) \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\id}{\mathrm{id}}\)

    \( \newcommand{\Span}{\mathrm{span}}\)

    \( \newcommand{\kernel}{\mathrm{null}\,}\)

    \( \newcommand{\range}{\mathrm{range}\,}\)

    \( \newcommand{\RealPart}{\mathrm{Re}}\)

    \( \newcommand{\ImaginaryPart}{\mathrm{Im}}\)

    \( \newcommand{\Argument}{\mathrm{Arg}}\)

    \( \newcommand{\norm}[1]{\| #1 \|}\)

    \( \newcommand{\inner}[2]{\langle #1, #2 \rangle}\)

    \( \newcommand{\Span}{\mathrm{span}}\) \( \newcommand{\AA}{\unicode[.8,0]{x212B}}\)

    \( \newcommand{\vectorA}[1]{\vec{#1}}      % arrow\)

    \( \newcommand{\vectorAt}[1]{\vec{\text{#1}}}      % arrow\)

    \( \newcommand{\vectorB}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vectorC}[1]{\textbf{#1}} \)

    \( \newcommand{\vectorD}[1]{\overrightarrow{#1}} \)

    \( \newcommand{\vectorDt}[1]{\overrightarrow{\text{#1}}} \)

    \( \newcommand{\vectE}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash{\mathbf {#1}}}} \)

    \( \newcommand{\vecs}[1]{\overset { \scriptstyle \rightharpoonup} {\mathbf{#1}} } \)

    \( \newcommand{\vecd}[1]{\overset{-\!-\!\rightharpoonup}{\vphantom{a}\smash {#1}}} \)

    \(\newcommand{\avec}{\mathbf a}\) \(\newcommand{\bvec}{\mathbf b}\) \(\newcommand{\cvec}{\mathbf c}\) \(\newcommand{\dvec}{\mathbf d}\) \(\newcommand{\dtil}{\widetilde{\mathbf d}}\) \(\newcommand{\evec}{\mathbf e}\) \(\newcommand{\fvec}{\mathbf f}\) \(\newcommand{\nvec}{\mathbf n}\) \(\newcommand{\pvec}{\mathbf p}\) \(\newcommand{\qvec}{\mathbf q}\) \(\newcommand{\svec}{\mathbf s}\) \(\newcommand{\tvec}{\mathbf t}\) \(\newcommand{\uvec}{\mathbf u}\) \(\newcommand{\vvec}{\mathbf v}\) \(\newcommand{\wvec}{\mathbf w}\) \(\newcommand{\xvec}{\mathbf x}\) \(\newcommand{\yvec}{\mathbf y}\) \(\newcommand{\zvec}{\mathbf z}\) \(\newcommand{\rvec}{\mathbf r}\) \(\newcommand{\mvec}{\mathbf m}\) \(\newcommand{\zerovec}{\mathbf 0}\) \(\newcommand{\onevec}{\mathbf 1}\) \(\newcommand{\real}{\mathbb R}\) \(\newcommand{\twovec}[2]{\left[\begin{array}{r}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\ctwovec}[2]{\left[\begin{array}{c}#1 \\ #2 \end{array}\right]}\) \(\newcommand{\threevec}[3]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\cthreevec}[3]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \end{array}\right]}\) \(\newcommand{\fourvec}[4]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\cfourvec}[4]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \end{array}\right]}\) \(\newcommand{\fivevec}[5]{\left[\begin{array}{r}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\cfivevec}[5]{\left[\begin{array}{c}#1 \\ #2 \\ #3 \\ #4 \\ #5 \\ \end{array}\right]}\) \(\newcommand{\mattwo}[4]{\left[\begin{array}{rr}#1 \amp #2 \\ #3 \amp #4 \\ \end{array}\right]}\) \(\newcommand{\laspan}[1]{\text{Span}\{#1\}}\) \(\newcommand{\bcal}{\cal B}\) \(\newcommand{\ccal}{\cal C}\) \(\newcommand{\scal}{\cal S}\) \(\newcommand{\wcal}{\cal W}\) \(\newcommand{\ecal}{\cal E}\) \(\newcommand{\coords}[2]{\left\{#1\right\}_{#2}}\) \(\newcommand{\gray}[1]{\color{gray}{#1}}\) \(\newcommand{\lgray}[1]{\color{lightgray}{#1}}\) \(\newcommand{\rank}{\operatorname{rank}}\) \(\newcommand{\row}{\text{Row}}\) \(\newcommand{\col}{\text{Col}}\) \(\renewcommand{\row}{\text{Row}}\) \(\newcommand{\nul}{\text{Nul}}\) \(\newcommand{\var}{\text{Var}}\) \(\newcommand{\corr}{\text{corr}}\) \(\newcommand{\len}[1]{\left|#1\right|}\) \(\newcommand{\bbar}{\overline{\bvec}}\) \(\newcommand{\bhat}{\widehat{\bvec}}\) \(\newcommand{\bperp}{\bvec^\perp}\) \(\newcommand{\xhat}{\widehat{\xvec}}\) \(\newcommand{\vhat}{\widehat{\vvec}}\) \(\newcommand{\uhat}{\widehat{\uvec}}\) \(\newcommand{\what}{\widehat{\wvec}}\) \(\newcommand{\Sighat}{\widehat{\Sigma}}\) \(\newcommand{\lt}{<}\) \(\newcommand{\gt}{>}\) \(\newcommand{\amp}{&}\) \(\definecolor{fillinmathshade}{gray}{0.9}\)

    In particular, we will focus on micellar structures formed from a single species of amphiphilic molecule in aqueous solution. These are typically lipids or surfactants that have a charged or polar head group linked to one or more long hydrocarbon chains.

    clipboard_e46b8d8313e0a26cd418c0185fb64d4eb.png

    Such amphiphiles assemble into a variety of structures, the result of which depends critically on the concentration, composition, and temperature of the system. For SDS surfactant, micelles are favored. These condense hydrophobic chains into a fluid like core and present the charged head groups to the water. The formation of micelles is observed above a critical micelle concentration (CMC).

    clipboard_edb26b69b449570f456db051c79a515f1.png

    As the surfactant is dissolved, the solution is primarily monomeric at low concentration, but micelles involving 30–100 molecules suddenly appear for concentrations greater than the CMC.

    clipboard_e6b7e16d4c75b41d15d3a808b4dd60543.png

    Reprinted from http://swartz-lab.epfl.ch/page-20594-en.html.

    To begin investigating this phenomenon, we can start by simplifying the equilibrium to a two-state form:

    \[ nA \rightleftharpoons A_n \]

    \(K_n\) is the equilibrium constant for assembling a micelle with \(n\) amphiphiles from solution. \(n\) is the called the aggregation number.

    \[K_n = \dfrac{[A_n]}{[A]^n} = e^{-\Delta G^0_micelle / k_BT} \label{1}\]

    The total number of \(A\) molecules present is the sum of the free monomers and those monomers present in micelles:

    \[CTOT = [A] + n[A_n].\]

    The fraction of monomers present in micelles:

    \[ \phi_mi = \dfrac{n[A_n]}{C_{TOT}} = \dfrac{n[A_n]}{[A]+n[A_n]} = \dfrac{nK_n[A]^{n-1}}{1+nK_n[A]^{n-1}} \]

    This function has an inflection point at the CMC, for which the steepness of the transition increases with \(n\). Setting \(φ_{mi} = 0.5\), we obtain the CMC (\(c_0\)) as

    \[ c_0 = [A]_{cmc} = (nK_n)^{\dfrac{-1}{n-1}} \]

    Function steepens with aggregation number \(n\):

    clipboard_e3963af399a5140b987b66c2e45a36db5.png

    Thus for large n, and cooperative micelle formation:

    \[ \Delta G^0_{micelle} = -RT\ln{c_0} \]

    Note the similarity of Equation \ref{1} to the results for fractional helicity in the helix-coil transition:

    \[ \dfrac{s^n}{1+s^n}\]

    This similarity indicates that a cooperative model exists for micelle formation in which the aggregation number reflects the number of cooperative units in the process. Cooperativity can be obtained from models that require surmounting a high nucleation barrier before rapidly adding many more molecules to reach the micelle composition.The simplest description of such a process would proceed in a step-wise growth form (a zipper model) for \(n\) copies of monomer \(A\) assembling into a single micelle \(A_n\).

    \[ nA \rightleftharpoons A_2 +(n+2)A \rightleftharpoons A_3 +(n-3)A \rightleftharpoons ... \rightleftharpoons A_n \]

    \[ K_n = \prod_{i=1}^{n-1} K_i \qquad K_i = \dfrac{k_f(i \rightarrow i+1}{k_r(i+1 \rightarrow i} \]

    Examples of how the energy landscape looks as a function of oligomerization number ν are shown below. However, if you remove the short-range correlation, overall we expect the shape of the energy landscape to still be two-state depending on the nucleation mechanism.

    clipboard_ee6fded7d3abbfb6bc82046a0b149ce4f.png

    This picture is overly simple though, since it is not a one-dimensional chain problem. Rather, we expect that there are equilibira connecting all possible aggregation number clusters to form larger aggregates. A more appropriate description of the free energy barrier for nucleating a micelle is similar to classical nucleation theory for forming a liquid droplet from vapor.

    ____________________________________________________________

    D. H. Boal, Mechanics of the Cell, 2nd ed. (Cambridge University Press, Cambridge, UK, 2012), p. 250.


    This page titled 19.1: Micelle Formation is shared under a CC BY-NC-SA 4.0 license and was authored, remixed, and/or curated by Andrei Tokmakoff via source content that was edited to the style and standards of the LibreTexts platform.